
ro

•IIIIPIP^PIIBipilBPPHilBBBililP

for Improved Generalization

in Artificial Neural Networks

DISSERTATION
Lemuel Ray Myers. Jr.

Captain. USAF

AFIT/DS/ENG/98-14

füSrSJAtÖY XKUfLWW) 1

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

AFIT/DS/ENG/98-14

Radial Complexity Estimation

for Improved Generalization

in Artificial Neural Networks

DISSERTATION
Lemuel Ray Myers, Jr.

Captain, USAF

AFIT/DS/ENG/98-14

Approved for public release; distribution unlimited

The views expressed in this dissertation are those of the author and do not reflect the official

policy or position of the Department of Defense or the United States Government.

AFIT/DS/ENG/98-14

Radial Complexity Estimation

for Improved Generalization

in Artificial Neural Networks

DISSERTATION

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Lemuel Ray Myers, Jr., B.S.E.E., M.S.E.E.

Captain, USAF

September, 1998

Approved for public release; distribution unlimited

AFIT/DS/ENG/98-14

Radial Complexity Estimation

for Improved Generalization

in Artificial Neural Networks

Approved:

Lemuel Ray Myers, Jr., B.S.E.E., M.S.E.E.

Captain, USAF

Steven K. Rogers PhD
Research

Matthew Kabrisky JPhD
Committee Member

Mark E. Oxley PhD
Comiflittee Member nmflittee Member ^

Won B. Roh PhD
Dean's Representative

' HSesr mi
Date

" 4 See t I'm
Date

K^tmr
Date

^Uf 1?
Date

z^O/AJLj.
Robert A. Calico, Jr
Dean

AFIT/DS/ENG/98-14

Abstract

When training an artificial neural network (ANN) for classification using backpropa-

gation of error, the weights are usually updated by minimizing the sum-squared error on

the training set. As training ensues, overtraining may be observed as the network begins

to memorize the training data. This occurs because, as the magnitude of the weight vec-

tor, ||w||, grows, the decision boundaries become overly complex in much the same way as

a too-high order polynomial approximation can overfit a data set in a regression problem.

Since ||w|| grows during standard backpropagation, it is important to initialize the weights

with consideration to the importance of the weight vector magnitude, ||w||. With this in

mind, the expected value of the magnitude of the initial weight vector is here derived for the

separate cases of each weight drawn from a normal or uniform distribution. The usefulness of

this derivation is universal since the magnitude of the weight vector plays such an important

role in the formation of the classification boundaries. When the network overtrains on the

training data, it will not exhibit consistently low error on subsequent test data. One way to

overcome this overtraining problem is to stop the training early, which limits the magnitude

of the weight vector below what it would be if the training were allowed to continue until

a near-global training error minimum were found. The question then is when to stop the

training. Here, the relationship between training data set size and the magnitude of the

weight vector providing good generalization results is empirically established using cross-

validational analysis on small subsets of the training data. These results are then used to

estimate at what weight vector magnitude the training should be stopped when using the

full data set. The general classification ability of an ANN trained in this manner is shown

to increase the percentage of correctly classified test data points by an average of 1.5% over

that of one trained using true cross-validational early stopping on a smaller data set. The

technique of hyperspherical backpropagation, which entails training at a set weight vector

magnitude, is also introduced and shown to be useful in lowering the validation error during

training.

Table of Contents

Page

List of Figures v

Abstract i

I. Introduction 1-1

1.1 Problem Statement 1-1

1.2 Scope 1-3

1.3 Contributions 1-4

1.4 Organization 1-5

II. Background 2-1

2.1 Pattern Classification 2-1

2.1.1 ANNs for Classification 2-1

2.2 Weight Initialization 2-6

2.3 Searching for the Minimum Error 2-7

2.3.1 Genetic Approaches 2-8

2.4 Generalization 2-13

2.4.1 Radial Complexity 2-15

2.4.2 Regularization 2-20

2.4.3 Bayesian Analysis for Classification 2-22

2.4.4 Cross-Validation 2-27

2.4.5 Magnitude of the Weight Vector 2-28

2.5 Summary 2-30

III. Achieving Good Generalization 3-1

3.1 Initial Radial Complexity 3-1

3.1.1 Weights Distributed Normally 3-2

in

Page

3.1.2 Weights Distributed Uniformly 3-5

3.2 Consistent Behavior of Radial Complexity During Training ... 3-10

3.2.1 Consistency of Training Behavior When Using EP Train-

ing 3-18

3.2.2 Consistency of Training Behavior When Training on

TESSA Data Set 3-20

3.3 Cross-Validational Radial Complexity Estimation 3-21

3.3.1 Generalization Error 3-22

3.3.2 Early Stopping at the Estimated Radial Complexity . . 3-24

3.4 Training at a Fixed Radial Complexity 3-29

3.4.1 Genetic Approach 3-29

3.4.2 Hyperspherical Backpropagation Approach 3-30

3.5 Summary 3-35

IV. Conclusions and Recommendations 4-1

4.1 Conclusions 4-1

4.2 Recommendations for future Research 4-2

Appendix A. Weight Update Formula A-l

A.l Standard Batch Backpropagation A-l

A.1.1 Second Layer Weight Update A-l

A.l.2 First Layer Weight Update A-2

A.2 Weight Updates with Regularization A-3

Appendix B. Hyperspherical Coordinate Transformation B-l

Appendix C. Derivation of Angle Updates for Hyperspherical Backpropagation C-l

C.l Second Layer Angle Update C-l

C.2 First Layer Angle Update C-3

Bibliography BIB-1

IV

List of Figures
Figure Page

1.1. Hand-written Characters 1-3

1.2. Infrared Image 1-4

2.1. Activation Function 2-2

2.2. ANN Example 2-3

2.3. Genetic Algorithm 2-10

2.4. Sequential Squashing 2-12

2.5. Sequential Squashing Demo 2-14

2.6. Sigmoid Behavior 2-17

2.7. Discriminant Boundaries 2-19

2.8. Regularization Effect 2-21

2.9. Bayesian Training 2-26

2.10. Cross-Validation Example 2-28

3.1. Decay of the variance of the radial complexity with increasing W . . . 3-10

3.2. Growth of the expected value of the radial complexity squared and the

square of the expected value of the radial complexity with increasing W 3-11

3.3. Growth of the approximate expected value of the radial complexity and

the average observed magnitude of the radial complexity with increasing

W 3-12

3.4. SSE and Standard Backprop 3-14

3.5. SSE and Bayesian Backprop 3-15

3.6. Softmax error and Standard Backprop 3-16

3.7. Softmax error and Bayesian Backprop 3-17

3.8. EP for ANN Training 3-18

3.9. IR training 3-20

3.10. Cross-Validation result for 5 training data points from each class. . . . 3-25

Figure Page

3.11. Cross-Validation result for 50 training data points from each class. . . 3-26

3.12. Estimation of radial complexity 3-27

3.13. Cross-Validation result for 100 training data points from each class. . . 3-27

3.14. Overtraining on the TESSA data 3-28

3.15. Using an EP to train the ANN at a specific radial complexity 3-29

3.16. Standard backpropagation versus hyperspherical backpropagation on

OCR data 3-34

VI

Radial Complexity Estimation

for Improved Generalization

in Artificial Neural Networks

/. Introduction

1.1 Problem Statement

Artificial Neural Networks (ANNs) are approximation methods of establishing a re-

lationship between an input vector, x, and an output vector, y. The information about

this relationship is stored in a set of scalars called weights. In a feed-forward ANN, this

relationship is usually approximated by "training" the weights with a set of training vec-

tors. The two most important aspects of training an ANN are the convergence speed and

the ability to generalize well [69]. A significant amount of effort has gone into speeding up

the training time of an ANN [15,36,37,48,49,66,71,75,78,79]. Of the two, though, the

generalization ability of the network will determine its applicability to a given problem after

training [7,59]; an ANN which does not generalize well will quickly start to "gather dust"

since it does not perform consistently for new input data. This good generalization capa-

bility can be achieved a number of ways, including early stopping [7], pruning/growing of

the hidden layer nodes [51], cross-validational early stopping [59], and regularization [8,56]

(including Bayesian methods [10,41]). These methods attempt to limit the effective com-

plexity of the network, the effective complexity being the ability of the network to capture

the underlying structure of the training data. If the effective complexity is too low, the

network cannot model the underlying structure of the training data well so the error will be

consistently high on the training data and any test data. If the effective complexity is too

high, the network begins to memorize the training data, including any noise in regression

problems and outliers in classification problems. This yields a low error on the training data,

but will tend to yield inconsistent error on subsequent test data. In neither case is good

1-1

generalization observed, since the network is either insufficiently complex (too general) or

too complex to be general enough to give consistent, low-error classification results on future

data.

The pursuit of good generalization should determine the network architecture and the

magnitudes of the scalar weights. The complexity of an ANN necessary to achieve good

generalization for a given problem is determined in part by the size of the training set [7,83].

This means that if we split our data into separate sets for training, cross-validation, and

testing, we are limiting ourselves to an effective complexity that is smaller than one that

would be allowed if we used all available data for training [59]. There are three factors which

constrain the complexity of the discriminant boundaries when using an ANN as a pattern

classifier: the number of sigmoid building blocks (Si), the magnitude of the weight vector

(p), and the training data (amount available and intrinsic complexity of the distribution).

These three factors work in conjunction with each other, so, for example, if there are N

training examples, there will be some optimal 51 that will prevent overtraining regardless

of the magnitude of the weight vector, p. This is known as structural stabilization. Or, for

a given 51 and N, we can limit p such that overtraining will not occur. Ideally, though, we

want to constrain the complexity using the training data to as great a degree as possible since

this is the best information available about the distribution of the inputs which determines

the classification boundaries in a Bayes optimal classifier [7,16]. The more training data we

have, the closer we can build our discriminant functions to the Bayes optimal discriminant

functions. The problem, then, is to use as much training data as possible to train the ANN

so that we approximate the Bayes' optimal discriminant function as closely as possible.

Unfortunately, when training set size is finite, the training data alone frequently will not

provide adequate constraint of the complexity of the discriminant boundaries to prevent

overtraining and the resulting network does not perform optimally when classifying new

data. In this case, we then need to limit the number of hidden nodes, 51, or the magnitude

of the weight vector, p. Bartlett has argued that limiting p is more important than limiting 51

since a larger number of sigmoid building blocks (quantified by the number of hidden nodes,

51) can provide a closer approximation to the Bayes optimal discriminant boundaries [4].

1-2

In the past, the ANN training method of early stopping based on the cross-validation error

has proved somewhat successful, but has not taken advantage of the full training data set

so as to best approximate the Bayes optimal discriminant boundaries [16]; while methods of

ANN training that use the full data set have not necessarily provided good generalization

capabilities upon completion of training [7].

1.2 Scope

This research is limited to feed-forward single-hidden-layer ANNs. Batch backpropa-

gation is used since this method is theoretically guaranteed to converge to a solution [7,59].

The data sets used include a set of hand-written numerical characters from 0 — 9 (OCR data

set), an example of which is shown in Figure 1.1, as well as a set of infrared image data

(TESSA data set), an example of which is shown in Figure 1.2. These two data sets are

Ö I 234

Figure 1.1 Example of hand-written characters, or the OCR data set.

representative of the types of data ANNs are used to analyze in the real world, with the

TESSA data set being particularly difficult to classify.

1-3

200

250

300

350
100 200 300 400 500 600 700

Figure 1.2 Example of an infrared image from the TESSA data set.

1.3 Contributions

Several contributions are presented to the field of Artificial Neural Networks. First, the

expected initial "radial complexity," defined as the magnitude of the weight vector, is derived

for the case of the individual weights being initialized by drawing random variables from

uniform and normal distributions. Work in the past has concentrated primarily on initializing

the weights so as to decrease training time, while the consideration here is for improving the

generalization ability. Second, the radial complexity is shown experimentally to behave

consistently during training from run to run. This behavior justifies the cross-validational

early stopping procedures used here and in previous work. Third, the procedure of "radial

complexity estimation" which allows the weights to be trained based on the magnitude of

the weight vector is developed. Using this estimated radial complexity is shown to lead to

improvements in classification ability on data sets which are prone to overtraining. Finally,

the method of "hyperspherical backpropagation," is developed and shown to lead to lower

error on the validation set during training.

1-4

1.4 Organization

Chapter 1, Introduction, explains the problem to be solved, defines and limits the

scope of the research, and presents the contributions to the field. Chapter 2, Background,

reviews the current literature on methods of achieving good generalization in multi-layer

feed-forward ANNs, including discussions on the effect that the radial complexity has on

the decision boundaries. Chapter 3, Achieving Good Generalization, derives the expected

value of the radial complexity during weight initialization and demonstrates the feasibility

of using pseudo-cross-validational early stopping based on an estimated radial complexity to

achieve good generalization in a multi-layer feed-forward ANN using data sets which exem-

plify real-world classification problems. Also, the subject of hyperspherical backpropagation

is developed and shown to improve the validation error during training. Finally, Chapter

4, Conclusions and Recommendations, summarizes where this research puts the field and

where further research is indicated. The following chapter describes previous research in the

area of using ANNs for pattern recognition.

1-5

77. Background

Man is constantly trying to teach machines to ease his workload. Some types of pattern

recognition are considered quite overwhelming or tedious for a human; analyzing large num-

bers of mammograms for possible cancer [86], determining the identity of a suspect based on

comparing fingerprints with those on file in a huge database [25], or recognizing a particular

phoneme in a set of speech signals [80]. In this chapter, the performance of ANNs as pattern

recognizers is discussed, as are the steps necessary to assure that trained ANNs perform

well when making decisions after training. The ideal pattern classifier is the Bayes optimal

classifier since it provides the minimum probability of misclassification.

2.1 Pattern Classification

The best error rate one can hope to consistently achieve in any classification problem is

the Bayes error rate. This is the error achieved when using a Bayes optimal classifier, which

uses the distribution of the inputs to make classification decisions [7,16] and minimizes the

probability of misclassification by using the posterior probability

P_Wft)p(ft)
p(x)

to make classification decisions. Unfortunately, the true statistical properties of the input

data are seldom known, so various methods are employed to mimic the Bayes optimal classi-

fier. After training an ANN as a pattern classifier, the best generalization results are attained

if it forms Bayes optimal decision boundaries.

2.1.1 ANNs for Classification. Historically, maximum likelihood estimation (MLE)

techniques, such as backpropagation of error, have been very popular for training neural

networks. Several sources [7,59,60] give excellent treatments on these methods. Ruck

demonstrated that when training an ANN as a pattern classifier using Sum-square error

(SSE), upon completion of training it provides a good approximation to a Bayes optimal

classifier [61]. SSE is the most widely used criterion for evaluating the error of a network,

2-1

but other error functions can be used (i.e. Minkowski error), and, in fact, for ANNs used

for classification, the softmax error is more appropriate [7] for approximating the posterior

probability of an input belonging to a specific class. The outputs of the network can be

interpreted as probabilities of class membership if we structure our network using logistic

sigmoid activation functions (see Figure 2.1) for the hidden layer and softmax activation

functions (a generalization of the logistic sigmoid activation function) for the output layer [7,

9, 59]. Using the softmax function allows us to interpret the outputs of the network as

Figure 2.1 Demonstration of how the activation function, g(a,k), is related to the output
of a given node.

probabilities of class membership by forcing the values at the output layer of the network to

lie in the range (0,1) and sum to 1. The softmax function is defined as

Vk = 9(a>k) =
exp(afc) (2.1)

Efe'exp(afc<)'

The summation over k' is over all the outputs and acts as the normalization factor.

Consider a classification problem on the well-known IRIS data set. This data contains

three classes of flowers and each data vector consists of four features. The database has 150

input feature vectors. An example ANN architecture used to classify this data is shown in

Figure 2.2. This ANN has two layers and five hidden nodes. The weights feeding into the

hidden layer are denoted as Wlji, the biases feeding into the hidden layer are denoted as

Blj, the weights feeding into the output layer are denoted as W2kj, and the biases feeding

2-2

Xi

Xl

X3

XA

y>

y

y*

Figure 2.2 Artificial Neural Network used in our example.

2-3

into the output layer are denoted as B2^. The form of the weight vectors is,

Wl =

Bl =

Wl =

B2 =

Wli,i Wl1>2 ••• WlhR

Wl2,l Wl2t2 W12,R

Wlsi,l Wlsi,2 Wlsi,R

Bh

BU

BUx

W2hl W2h2

W22,i W22,2

W2Ktl W2Ka

B2X

B22

B2

W2ltS1

W22,S1

W2 K,SX

K

With four input features, five hidden nodes, and three classes, we have 4x5 + 5x3 = 35

weights as well as 5 + 3 = 8 biases for a weight space of dimension 43. The final weight

vector, after training, would ideally give an output for a set of training data that had low

error between the target vectors and the output vectors, while also yielding low error on the

test data. Here, the training data set is denoted by

D = {(xW>tW),...,(xW>tW)}I (2.2)

2-4

with x(") being the nth training vector and t^n^ the nth target vector that represents the class

membership of the nth training vector. A typical normalized feature vector is

X(D =

-0.8977

+1.0286

-1.3368

-1.3086

This feature vector belongs to class 1, so

t^ =

1

0

0

This network has three outputs: output one is the probability that the input, x^n\ is a

member of class one, C\, given the training data, D, and outputs two and three are the

probabilities of belonging to class two and three, respectively, such that

yw = P(X<»> e dp),

2/2
.(») = P(x e C2\D),

.(») yf> = P(XWGC3|D)

When using the softmax function at the outputs, the error function used for classifica-

tion takes the form

^ = -EE*Sr)Myf,)) (2-3)
n=\k=\

which is based on Bishop's cross-entropy for multiple, mutually exclusive classes [7]. t^' is

the target value at output k for input vector n, while y£ is the actual value at output k

for input vector n, and K denotes the number of disjoint classes, (Ci,C2, • • -CK)- For

completeness, we derive the weight update procedure for this error function in Appendix A.

2-5

Upon first initializing the weights, the output, yW, for input vector x^ shown above is

rW

0.3443

0.3178

0.3379

This equal probability state makes sense since our weights are still in a random state and

no training has happened yet. After just five training epochs (weight updates) through the

training data set, D , the output vector for our class one training input vector is

r(D

0.9634

0.0000

0.0366

which is much closer to the desired output of

t« =
1

0

0

We interpret this output as the probability of the input vector belonging to class 1 is ap-

proximately 0.96, or

P(x<n> G Ci\D) « .96.

The training algorithm pushes the weight vector into the direction necessary to lower

the error on the training set, but what then should be the starting point of this weight

vector?

2.2 Weight Initialization

The importance of the initial weight vector is an often overlooked part of the training

process [29]. In the past, for standard backpropagation, the approach to choosing a starting

weight set has been to choose initial weights from a uniform distribution between plus and

2-6

minus a, usually with a = .5 [29]. Kolen argues that the magnitude of the weight vector at

initialization plays a key role in the convergence speed of the backpropagation algorithm [29].

Other methods of weight initialization have also focused primarily on speeding up the weight

training process [48,64], although Denoeux uses prototypes for weight initialization and

considers the repercussions that this initialization can have on generalization [13]. Bayesian

backpropagation relies on a "prior" probability distribution of the weights which is usually

chosen to be a normal distribution with a parameter, a, governing the variance of that

distribution [7,10,41,59]. a is chosen based on our prior belief on how closely we think each

weight is to zero. Although the point of regularization is to create a better generalized ANN,

there has not previously been a direct relationship established between a and the ability of

the network to generalize well.

After initialization, the weights are usually trained using backpropagation of error, but

does the resultant set of weights provide the lowest possible error on the training set?

2.3 Searching for the Minimum Error

With MLE techniques, such as back-propagation of error, the error is computed as a

function of the weights and some gradient descent technique is used to find a local minimum.

Though this takes account of only one of many possible minima in weight space, the results

are frequently satisfactory enough to justify our limited search. If the network does not

converge to an adequate solution, the standard procedure is to restart the algorithm with a

new random set of weights [12] to find a more suitable solution.

Fogel [18] points out that one popularly accepted disadvantage of many MLE tech-

niques (such as gradient descent along the error surface) is the propensity for the weight

vector to become trapped in a local error minimum that is unsuitable. Although these

methods converge to a solution quickly, once perceived to be trapped in an unacceptable

local minimum the algorithm is usually reinitialized with a random weight vector and the

training restarted [12]. Much effort has gone into finding the global error minimum when

training the weights [34,82], but Lawrence has recently cast aspersions upon this proce-

dure [33]. He points out that the minimum error found by gradient descent methods when

2-7

training an ANN is often significantly worse than the global minimum error. This makes

sense when considering generalization ability of an ANN; while low error is obviously a de-

sirable characteristic, the weight vector yielding the lowest error obtainable on the training

set will almost never be the weight vector yielding the lowest error on the test set. This

subject will be further expanded in section 2.4. Other methods exist for training ANNs, one

such being based on evolution in living organisms.

2.3.1 Genetic Approaches. Another method of determining the weights in an ANN

is by letting the weights evolve over time in such a way as to mimic the evolution of an

organism. These genetic approaches have become more popular for searching out local error

minimums in ANNs [27,34,47,53,67,69,81,84].

2.3.1.1 Genetic Algorithms. Genetic Algorithms (GAs) have been used to

determine weights in neural networks with varied success [28,30,65]. GAs are loosely based

on models of genetic change, or evolution, in populations of individual organisms [22]. Each

organism (weight vector) is defined as a chromosome, which in turn is made up of some

pre-determined number of genes (bits representing weights). These genes are often treated

as binary values, so a typical chromosome would be represented by a string of genes, or

vector, such as (100110000111010...11001)r. The fitness of each of these organisms can be

measured, and possible goals include invoking an evolutionary process to either improve the

overall fitness of the population or to obtain a highly fit single member. This idea of fitness

governs the extent to which an individual organism can influence future generations, and

genetic operators have been developed to propagate this influence. Crossover and mutation

are the operators most often used, where crossover is the swapping between two chromosomes

of some subset of their genes, and mutation is the bit-switch of randomly selected genes in

a chromosome. Crossover allows organisms to evolve much more rapidly than they would if

each offspring simply contained a copy of the parent chromosome, occasionally modified by

a mutation, and corresponds to a large step size in our weight space. Mutation, on the other

hand, offers the opportunity for new genetic material to be introduced into the population,

producing a more robust search of the entire solution space, and mutation corresponds to a

2-8

small step size in our search over weight space. A typical GA search is described below and

illustrated in Figure 2.3.

2.3.1.2 Typical GA Search.

1. Randomly generate an initial population of chromosomes.

2. Test the fitness of each chromosome and save the single chromosome which is most fit

in "most-fit" queue.

3. Generate a new population from the old population using fitness of members of old

population and a "roulette wheel" random sorting with greater fitness increasing the

probability of being picked.

4. Perform crossover and mutation over entire new population.

Each chromosome has a random chance for crossover. When tagged, a chromosome

will interchange some subset of its genes with the same subset of genes in another tagged

chromosome, for example

0

0

0

0

0

1 0

1 0

1 0

1 0

1 0

1 0

1 0

1 0

1 0

1 0

1 0

0

0

0

0

0

0

(2.4)

Each gene has a random chance for mutation. When tagged, a bit switch occurs

(i.e., 1 -> 0 and 0 -> 1).

2-9

5. Test the fitness of each chromosome in the new population and save the single fittest

chromosome if it is more fit than the chromosome currently in the most-fit queue.

6. The new population takes the place of old population and loops back to step 3.

7. Continue until some termination criteria is met (high fitness, number of generations,

etc.).

8. Chromosome in most-fit queue is solution.

Initial chromosome population

Test each chromosomes fitness
and use roulette wheel sort

„„ / u Is one x Y
NO / chromosome \ Te°

better than
Most Fit?

New chromosome population
XX

XX

XX #

Mutate and Cross-Over
some genes

Even newer chromosome population

x x

Yes

Save most fit in
"Most Fit Queue"

Figure 2.3 Typical Genetic Algorithm Search [23].

Korning points out that training weights in an ANN requires very large chromosomes

to ensure sufficient dynamic range for the magnitudes of the weights [30]. Angeline [3]

2-10

gives good reasons to believe that GAs are less than optimal for training neural networks,

especially when compared with the more general Evolution Program.

2.3.1.3 Evolution Programs. Evolution Programs (EPs) are a generalization

of Genetic Algorithms. While Genetic Algorithms are generally considered to be limited to

binary representations of the data, Michalewicz points out that EPs use whatever form is

most useful (usually a form closely related to the actual data) to solve a given problem [43].

A typical chromosome may then be simply a vector of real numbers. With EPs, we are

not limited to or bound by the crossover and mutation operators typically used in GAs.

If mutation and crossover are used, and if real numbers replace binary, possible solutions

pointed out by Michalewicz are:

1. For crossover, simply swap some subset of genes (now real numbers instead of bits) as

in GA crossover.

2. For mutation, replace the tagged gene with a new real number generated by some

probability distribution.

EPs have been used to find the weights in ANNs [3,57,68]. Fogel argues that mutation

is the dominant operator in Evolutionary Programming [18], and Angeline points out that

crossover may be particularly inappropriate when training weights for a neural network [3].

Porto [57] uses only a mutation operator and a fitness function based on the sum-squared

error. He perturbs chromosomes with a normal random variable whose variance is equal to

that error, at which point new and old chromosomes compete to find a new population that

has an overall lower error. EPs and GAs, though, converge to single solutions; when more

than one solution is desired, we need an algorithm that can find multiple solutions.

2.3.1-4 Sequential Niche Techniques. Evolution Programs are fundamen-

tally tools to solve maximization problems, finding a local maximum of a function using

appropriate genetic operators. Beasley [5] developed a method that allows conventional EP

techniques to be used to find an arbitrary number of local maxima of a function with several

local maxima. This method is outlined in Figure 2.4 and summarized as follows [5]:

2-11

Use EP to find a solution.

Modify fitness function to
squash all past solutions

No

Figure 2.4 Illustration of Sequential Squashing of the Fitness Function [5].

2-12

Sequential Niche Algorithm.

1. Find an initial local maximum using any standard EP technique.

2. Modify the fitness function in the region surrounding the initial local maximum using

a "squashing" function to eliminate it from subsequent searches.

3. Search for as many additional local maxima as desired, re-modifying the fitness function

after each solution is obtained to eliminate that solution from the search. The locations

of all local maxima are stored in memory and the fitness function is modified to squash

all local maxima found in previous searches.

Beasley discusses a number of squashing functions, one of which is

mi-dxe/r if d <

G(r) = { . (2.5)
1 otherwise

where m > 0 is the desired multiplicative factor at the center of the solution on

subsequent fitness tests, r is the user-defined radius about the solution that will be affected

by G, and dxs is the actual distance of the chromosome from the solution mode.

Figure 2.5 demonstrates the application of Equation (2.5). Here, we have a four maxima

fitness function in two-dimensional space. As the search locates each maximum, the fitness

function is modified to eliminate that maximum from the search until all four maxima of the

function are found.

Having discussed some of the most widely accepted methods for training ANNs, we

need to recall that the primary concern of any ANN design should be that the network

generalizes well when tested on previously unseen data.

2.4 Generalization

An ANN's usefulness after training is completely determined by its ability to correctly

analyze future data generated by the same process that generated the training data [1,

2-13

Figure 2.5 Plot (a) shows the unaltered, initial fitness function. Plot be shows the al-
tered fitness function after one of the maxima has been found by the EP and
subsequently squashed. Plots (c) and (d) show finding and squashing of the
remaining maxima and how this affects the fitness function each time.

11,31,33,35,44,50,54,58,62,76,85]. A number of researchers have bounded the expected

generalization error [21,42], and some attempt to estimate the generalization ability of an

ANN after training [52,63,73,74]. It is well known that reducing the complexity of the

network leads to better generalization [14]. Reducing the complexity entails limiting the

architecture or limiting the value of the individual weights [19,24]. Efforts to achieve good

generalization by limiting the number of free parameters, or structural stabilization, have

been carried out using growing and/or pruning of weights and hidden nodes [14,51].

There are a number of ways to limit the value of the individual weights so as to im-

prove generalization. Regularization appends a function of the weights to the error function

so as to penalize large weight vector magnitudes during training, while cross-validational

early stopping bases the stopping criteria on the validation set classification error rather

than on the training set classification error, thereby stopping training while the weight vec-

tor's magnitude is smaller than it would be if only the training set error was taken into

consideration [7,59]. Some research investigates adding noise to the training data so as to

"smear out" the data and make overtraining less likely [26,72], but Bishop indicates that

2-14

this method is closely related to limiting the magnitude of the weights in much the same

way as regularization [7]. Another form of limiting the value of the weights is soft weight

sharing. Once again, though, Bishop points out that this is another form of regularization.

The magnitude of the weight vector is central to the issue of good generalization and is

here referred to as the "radial complexity." The next section gives an example showing how

changing the magnitude of the weight vector affects the decision boundaries for classification.

2.4-1 Radial Complexity. The fact that the magnitude of the weight vector is

important for good generalization has been used in regularization by many researchers [7,

59], and Bartlett has pointed out that the size of the individual weights (which is directly

correlated with the magnitude) is more important than the number of weights in problems

where ANNs are useful [4]. Dunne analyze the evolution of the weights in a simple, two

feature, two weight, problem as the polar coordinate characteristics of the weights were

varied [17]. To understand how the magnitude of the weight vector affects the classification

ability of the ANN trained as a pattern classifier, we need to understand how an ANN

constructs discriminant boundaries from summations of weighted sigmoids. There are many

factors which affect how the decision boundary is constructed. First, let us look at the

equation for the output of a hidden node,

zj = 9{WJ\XI + wj2x2 + ... + wjRxR + bj), (2.6)

where Wji is the weight from input X{ to hidden node j, bj is the bias feeding into node j,

and g(-) is the logistic sigmoid output activation function

g(a) = —-—. (2.7)

Another sigmoid activation function often used is the tanh activation function,

gö 0—0,

g(a) = , (2.8)

2-15

but is related to the logistic sigmoid through a linear transformation (which can be done by

the weights and biases), so the choice of which to use is irrelevant at the hidden layer [7].

Each hidden node contributes a sigmoid which is the basic building block of the discriminant

boundaries.

The logistic sigmoid is a non-decreasing function and is approximately linear in the

region around a = 0. If we consider this region then we see that the output of the hidden

node (as a function of the input) lies on a hyperplane whose slope is determined by the

weights [17] and whose position is determined by the bias term. Where this hyperplane

crosses through g(0) forms a preliminary decision boundary. Therefore, we can express this

individual decision boundary as

WjiXx + wj2x2 + ... + WJRXR + bj = 0. (2.9)

For simplicity, let us consider the two-feature case. The extension into multiple dimensions

is straightforward. Now

WjiXi + Wj2x2 + bj = 0. (2-10)

So, if Wj2 7^ 0, then

WJIXI + bj
x2 =

J- J-
wj2

Wji bj
X! - -J-. (2.11)

wj2 wj2

From Equation (2.11), we can see that the slope and intercept of the decision boundary

are functions of the ratio of weights. Changing the magnitude of a vector containing these

three weights has no effect on the location of this individual sigmoid in input space, but

does change the slope of the hyperplane approximation in the linear region of the logistic

sigmoid. Figure 2.6 demonstrates how changing a weight's magnitude changes the slope of

the sigmoid in the linear region. Keep in mind, though, that a given output, yk, is determined

by a function that is the shifted weighted sum of all the sigmoids from all the hidden nodes

2-16

8 10

Figure 2.6 Demonstration of how the slope of the linear region of the sigmoid function
(the region around g(0)) changes with changing weight magnitude. The steeper
slope corresponds to a larger weight magnitude while a shallower slope corre-
sponds to a lower weight magnitude.

2-17

so that

Vk = 9{wk,\Z\ + Wk,2Z2 + ... + wktsizsi + h), (2.12)

where Wkj is the weight going from hidden node j to output node k, and bk is the bias

feeding into node k. The form of the activation function at each output node is important

in interpreting each output's meaning for training, but is not the primary factor affecting

the decision boundaries in the input space. Each weight going into the output layer again

alters the slope of the approximation hyperplane used to build each individual decision

boundary. The output bias translates all the decision boundaries, but affects all individual

sigmoids used to create the decision boundaries equally. The primary factor, then, in the

determination of the decision regions is the ratio of weights and biases, not the actual values.

The importance in the actual values of the weights is seen when looking at the summation

of the sigmoids. Where the sigmoids intersect forms a "corner," and the "sharpness" of this

corner depends on the steepness of the two sigmoids; two steep sigmoids intersecting will

form a sharp corner, while two shallow sigmoids meeting will have a more rounded corner.

Remember, the position of the sigmoid decision boundary is a function of the ratio of weights,

while the steepness of the sigmoid is a function of the magnitude of weights. In order for a

network to overtrain, it needs to "reach out and grab" outlying data points that lie within

what should statistically be another class's decision space. To construct a decision region

such as this, narrow and long, would require sharp corners. By limiting the magnitude of

the weight vector, we have limited the ability of the ANN to construct sharp corners and

therefore limited it's ability to overtrain. Figure 2.7 shows the effect that changing the

magnitude of the weight vector has on the decision boundaries. This figure shows contour

plots of a triangular decision region formed from three sigmoids in two-dimensional space.

Notice that decreasing the radial complexity has a "low-pass" filtering effect on the high

frequency corners.

ANN training that concentrates on structural stabilization (limiting the number of

weights) attempts to limit complexity by limiting the number of sigmoids used to build

the discriminant functions, which we see now is the functional equivalent of limiting the

magnitude of the weight vector since a smaller magnitude weight vector will require more

2-18

(c)

10
Feature 1

10
Feature 1

llfffc
sm—

10
Feature 1

20

(d)
20

15 es
% 310
<a m

UH

5

0

-ill il ^JJ\

0 10
Feature 1

20

(f)

10
Feature 1

\^

^

O)
C\\\

10 20
Feature 1

Figure 2.7 Example showing how changing the magnitude of the weight vector changes the
ability of the ANN to make decisions based on discriminant boundaries. The
magnitude of the weight vector decreases as we move from top left, plot (a), to
bottom right, plot (f). Notice that the position of the discriminant boundaries
remains unchanged, but the sharp corners are rounded off with a decrease in
magnitude.

2-19

sigmoids to accomplish the same type of discrimination accomplished by fewer weights with

unlimited magnitude. One way to keep the magnitude of the weight vector small is to use

regularization.

2.4.2 Regularization. Regularization is a way to keep the magnitude of the weight

vector relatively small so as to minimize over-training in a network and achieve good gen-

eralization [2,7,55,56,59]. The error function using regularization is the sum of the log

likelihood error, ED, and the regularization error, Ew,

where

S(w) = ED + EW (2.13)

= -EE4n)Myin)) + fl|w||2, (2.14)
n=lfc=l L

W

^ = flM|a = £5>?, (2.15)

and a > 0 is the regularization coefficient. Regularization effectively warps the error surface

by adding it to a hyper-parabola centered at the origin, thus favoring weight vectors closer

to zero. Figure 2.8 demonstrates the effect of regularization graphically. The weight update

repercussions due to regularization are discussed in Appendix A.2. Ripley [59] feels that

regularization of some sort should always be used when training an ANN. Notice that the

effect of regularization is to decrease the effective complexity by decreasing the magnitude

of the weight vector as the network is being trained.

The regularization coefficient used in regularization determines the amount that the

weight vector's magnitude is penalized, and there is a direct relationship between this coef-

ficient and the ability of the final network design to generalize well [7]. Larsen attempted to

find the regularization coefficient that yielded the optimal generalization performance [32],

while Bayesian backpropagation, discussed in the next section, allows this parameter to be

changed while the network is being trained [7,10,41].

2-20

Original Error Surface Regularized Error Surface

-10 -10 -10 -io

Figure 2.8 Effect of using the magnitude squared of the weight vector for regularization.
Notice that the new error function is just the old error function warped to lie
on the surface of a quadratic bowl.

2-21

Some forms of regularization attempt the use of the full data set as the training set, but

standard regularization relies on the regularization coefficient, a, to determine the penalty

placed on the magnitude of the weight vector, a can be chosen by using cross-validation

to determine at what a overtraining occurs. This again, though, limits the size of the

training data set used to determine a, thereby imposing too stringent a penalty on p and

overconstraining the complexity of the discriminant boundaries that would be allowed if a

could be determined using all the data.

Bayesian backpropagation is a form of regularization that attempts to overcome this

overconstraining by using all available data when updating the regularization coefficient.

2.4-3 Bayesian Analysis for Classification. Recently, Bayesian techniques have

been shown to be useful in terms of analyzing different aspects of neural network architec-

ture [7,10,38-41,46]. With Bayesian backpropagation, the regularization parameter a is

updated during the training process. The limitations of this technique lie in the approxi-

mation of the error surface as a Gaussian function in the area local to the most probable

weight vector, WMP, which yields lowest error on the training set. Here, though, there is no

guarantee that the resultant weight vector provides the lowest generalization error. With

this Gaussian approximation, the Hessian needs to be computed and it's eigenvalues found

in order to update a during training. A further approximation that avoids the evaluation of

the Hessian actually uses the current magnitude of the weight vector to update a, thereby

simply loosening the restrictions on the current weight vector's magnitude and carrying the

training further from the search for an optimal generalization ability. These techniques have

been used for (among other things) training the weights and choosing one network model over

another. Rather than finding a local acceptable weight vector which minimizes regression or

classification error, the Bayesian method (in its purest form) integrates over all weight space

when calculating the output of the ANN. When discussing Bayesian techniques, marginal-

ization becomes a topic of prime interest, since we need to integrate out the dependence of

our answer on the weights. For example, the output of an ANN, in the strictest Bayesian

sense, would be

2-22

y(N+V=[f(x.(N+1\w)p(w\D)dw, (2.16)
JR

N

where / (•) is the function represented by the network, D is the training data set D =

{(x^\ t^),..., (x^, t^)}, and p (w|D) is the probability density function. This integration

considers the outputs resulting from all possible solutions in weight space weighted by the

posterior distribution of the weights at those points. Therefore, final layer outputs resulting

from weights that lie in an area of high posterior distribution will contribute more to the

integration solution than outputs resulting from weights that lie in an area of low posterior

distribution.

According to Bayes' Theorem [7], if p (•) is the pdf and P (•) is the cdf on KN, then

p(w\D) = P(D\w)^ytoiz\\weRN. (2.17)

Notice that Bayes' Theorem can be interpreted as saying that the posterior distribution

of the weights is equal to the probability of a data set being correctly classified given that

set of weights (the likelihood), weighted by the ratio of the value of the weight prior density

function at that point in weight space to the Probability of the data set.

When using the softmax function so that the outputs approximate the posterior prob-

ability of belonging to the correct class, the likelihood function is

N C nn
n=\k-l

ppiw)^nn(yin))^. (2-18>

The likelihood function is the probability that all outputs are from the correct class

(since y£ is the actual output at node k and t£' is the desired output at node k) and is a

multiplication over all outputs and all data vectors from all the different classes.

2-23

The prior probability density function (pdf), p(w), is based on our belief in the form

the final weight vector should take. Usually, the bias/variance argument which affects the

generalization ability of the network suggests that the solution weight vector will be relatively

small [7], so p(w) is usually chosen to be a Gaussian such that

w

*w)=(£)T«p(-f||w||'). (2.19)

This prior pdf imposes the same type of restrictions on the magnitude of the weight

vector as does the regularization procedure discussed in Section 2.4.2. The regularization

factor, a, is commonly referred to as a hyperparameter and is discussed in Section 2.4.3.1.

Integrating over all weight space can prove somewhat impractical, so approximations are

unavoidable.

2.4-3.1 Gaussian Approximation for Bayesian Training. MacKay [41], as

well as Buntine and Weigend [10], applied the Bayesian approach to ANN training for prac-

tical applications. They make the assumption that the error surface in the vicinity of the

"most probable" weight vector (one with lowest error over the training set), WMP, is lo-

cally a Gaussian function. This approximation allows the area in the vicinity of WMP to

be evaluated as a quadratic error function, the analysis of which is straightforward but can

require the evaluation of the Hessian matrix. The final error function, -S'(w), takes the form

of Equation (2.13).

Using the Gaussian approximation, the hyperparameter, a, is initially chosen so as to

represent our confidence in our initial assumption about the tightness of the prior density,

p(w), about zero (^ is the variance of the prior's Gaussian shaped distribution). The net

is then trained using any standard technique which incorporates regularization, and a is

treated as the regularization coefficient and adjusted every few epochs during training.

The result of this technique (as summarized by Bishop [7] and applied solely to clas-

sification) is demonstrated in Figure 2.9 and yields the following algorithm.

2-24

Bayesian Backpropagation.

1. Choose an initial positive value for the hyperparameter a. Initialize the weights in the

network using values drawn from the prior distribution, p(w).

2. Train the network using a standard non-linear optimization algorithm to minimize the

total error function S(w) given in Equation (2.13).

3. Every few cycles of the algorithm, re-estimate values for a. This can require evaluation

of the Hessian matrix and evaluation of its eigenvalue spectrum, or the use of one of

the approximations mentioned below.

4. Stop when criteria is met.

The evaluation of the Hessian matrix can be avoided by using an approximation to

update values for a. This is simply [7]

W
c*new = WJT- (2-20)

ZU/W

If we let p be the magnitude of the weight vector, ||w||, then

EW = \Y>' = \P
2 (2-21)

and

nnew _ J_
o2 '

w
anew = -V. (2.22)

Therefore, it would appear that changing a using this approximation simply tracks a change

in p and allows the network to train in the vicinity of the new radial complexity. The Gaussian

approximation allows Bayesian backpropagation to train the ANN using regularization with

a dynamic regularization coefficient, but some would argue that it is closer to the intent of

Bayes' rule to estimate the initial integration instead.

2.4-3.2 Sampling Posterior Distribution in Weight Space. One way to sidestep

MacKay's Gaussian approximation is to approximate the initial integration of Equation (2.16) [7,

2-25

Initialize weight vector
using prior distribution.

-W

a

p(wi)

Train weight vector
using regularization.

wx

w x+1

yes

no

Re-estimate a using
using Gaussian appx.

new w

a =
IE w

Wi

End

Figure 2.9 Flow chart for Bayesian training of the weights in an ANN.

2-26

46]. By finding a set of weight vectors where p(w | D) is relatively large in weight space, we

can approximate the integral in Equation (2.16) with

1 M

£("+i) ^ 1 £/(x("+D)Wi)) (2.23)
M i=i

where M is the number of sample points in weight space. Neal [45,46] demonstrated the ap-

plicability of this method by using a modified Monte-Carlo search to find different maximum

points in the posterior distribution of the weights.

While regularization limits the magnitude of the weight vector based on the regular-

ization coefficient, early stopping limits the magnitude of the weight vector by stopping the

training (and therefore the growth of the magnitude of the weight vector) based on the error

obtained on the validation set which is not used to update the weights [7].

2.4-4 Cross-Validation. Cross-validation estimates the generalization error by

using the cross-validation set error as an approximation to the true generalization error.

Cross-validational early stopping is a popular tool for training ANNs since it increases the

generalization ability of the network after training [59]. In cross-validation, the training data

set is broken into multiple sets, new training sets and validation sets. The weights are up-

dated using any standard MLE approach, but now the error on the validation set is tracked

along with the error on the training set. When cross-validational early stopping is used,

the weight vector chosen in the one that minimizes the error on the cross-validation set. As

Bishop points out [7], cross-validational early stopping limits the effective complexity of the

ANN since the ANN is trained, not until a set error is achieved on the training set, but until

the error on the validation set begins to increase. Since standard backpropagation techniques

usually attempt to set the magnitude of the weight vector to a small value at initialization

and the weights grow during training (see Section 3.2), the cross-validational stopping cri-

terion is correlated with the effective complexity of the ANN rather than a training error

minimization.

2-27

Figure 2.10 shows an example of cross-validation. The two curves represent errors

500

i i 1 i i i

-

450 -

400 -

350 -

300 -

250 ; Validation Error -

200 ^-—-""^

150 -

100

,—■ Training Error
- 50

500 1000 1500 2000 2500 3000
Epoch

3500

Figure 2.10 Cross-validation training on the TESSA data set. Here, the error is plotted
versus the training epoch.

obtained on two data sets, training data and validation data. The training data always has

the lower error since it is a biased estimate of the error that will be observed on the test

data, while the validation error diverges from the training error and eventually begins to

increase with increasing complexity.

2.4-5 Magnitude of the Weight Vector. The impetus behind regularization is the

attempt to limit the effective complexity of the ANN by limiting the magnitude of the weight

vector. Saseetharran points out that small initial weights prevent saturation of the sigmoid

activation functions, but quickly grow into the saturation regions [64]. Ruck indicates that

a limitation in the Bayes optimal classifier approximation would occur if the structural

complexity of the network (number of hidden nodes) was too low [61]. This implies that

we need some minimum complexity to approximate a Bayes optimal classifier, below which

the approximation breaks down. When limiting the structural complexity of the network,

a popular tool that has been used for bounding the generalization error is the "Vapnik-

2-28

Chervonenkis," or "V-C," dimension [77]. In the case of generalization of ANNs, we want

to consider the generalization error of a given architecture for a data set of size JV, denoted

9N(V),
as compared to the average generalization ability, g(y). In that vein, we write

P(max \gN(y) - g(y)\ > e) < 4A(27V)e-^. (2.24)
(y)

Equation 2.24 states that the probability of the max difference in generalization errors being

greater than e is bounded by some function of the number of training samples, N, and e.

The growth function, A(iV), gives the number of dichotomies which can be implemented by

the ANN on a set of TV training samples. Vapnik and Chervonenkis showed that this growth

function is either identically equal to 2N for all N, or is bounded above by the relation

A(N) < Ndvc + 1, (2.25)

where dye is the V-C dimension, and Ndvc is the number of patterns that a given network

architecture can memorize. Once the number of training samples becomes greater than

Ndvc, A(iV) begins to slow down compared with the exponential term in Equation (2.24)

and we can see that the right hand side of Equation (2.24) becomes arbitrarily small by

making iV sufficiently large. The primary downside to the V-C dimension analysis is that

it yields an extremely conservative estimate of the number of training data points necessary

to train an ANN to achieve good generalization results [4,7].

Bartlett [4] showed that for ANNs used for classification, the size of the individual

weights is more important for generalization than is the number of weights. He indicates that,

even with a number of weights much larger than is called for based on the V-C dimension, if

the effective complexity is limited, the generalization ability is not compromised, and, in fact,

larger networks can generalize better because they can create a larger number of discriminant

functions. The effective complexity based on the magnitude of the weights rather than the

number of weights is what regularization and early stopping attempt to minimize.

2-29

2.5 Summary

In this chapter, we reviewed how it has been shown that good generalization is the key

determinant when deciding on the suitability of an ANN for pattern recognition tasks. In the

context of limiting the effective complexity of an ANN, the methods of regularization and

cross-validational early stopping were examined and showed that limiting the magnitudes

of the weights during training tends to yield good generalization results. The next chapter

examines the characteristics of the radial complexity, including a method of training an ANN

to an estimated radial complexity that will have improved generalization characteristics after

training.

2-30

III. Achieving Good Generalization

The goal when training an ANN is to consistently achieve the lowest error on future data

sets. Training the ANN to achieve low error on the training set does not guarantee low error

on future data. In fact, training to low error on the training set can lead to overtraining

and actually introduce higher error on the subsequent test set data. Thus, regularization

pushes the weight vector in the direction of lower magnitude, thereby limiting the ability

of the ANN to form overly-complex decision boundaries and overtrain, and early stopping

stops the training process before overtraining can occur by also limiting the complexity of

the decision boundaries.

When standard training begins in an ANN, each weight is usually initialized to some

"small" random value so as to allow "growing room," [12] while in Bayesian backpropagation,

the weights are initialized based on our belief in what the final form of the weight vector will

be. Since the magnitude of the weight vector is directly related to the ability of the ANN to

form complex decision boundaries, the initial weight vector should be based directly on the

desired initial radial complexity.

3.1 Initial Radial Complexity

As discussed in Section 2.2, the initial value of the weights plays an important and often

overlooked part in the training process. One aspect of the Bayesian discussion of a prior

pdf simply formalizes what has always been done when training ANNs; namely initializing

the weight vector, w, based on a prior belief about the final form of the weights. Given

the importance of the radial complexity to the generalization ability of the final network,

the expected initial radial complexity generated by our initialization of the weights must be

considered before training is begun. We know that to find the expected value of the radius,

£(/?), we have

oo

OP) = I pip(P)dp, (3.i)

3-1

but this requires knowledge about the probability density function, fp(p). Here £(•) is the

expectation operator with respect to the pdf p(-).

3.1.1 Weights Distributed Normally. To find fp(p), we start with each individual

weight distribution. The first case considered is when each Wi has a distribution that is

N(0,cr2) (the prior pdf we have been discussing for Bayesian training). Define variables Xj

such that Xi is N(0,1), then Wi = aX{ is N(0,cr2). Furthermore, define a variable yi such that

yi = Wi = (trxi) =a Xi. (3.2)

We know that

P2 = V1 + IJ2 + - + VW

therefore

Define z such that

a2x\ + a2x\ + ... + a2x2
w, (3.3)

P2

^ = x2
1+x2

2 + ... + x2
v. (3.4)

z = ^, (3.5)

then we know that z has a Chi-square distribution, fz{z), for the random variable Z, with

W degrees of freedom [20], so

W,)J^*"/""*(-*) ^\ (3,)
0 ,z <0

What we want, though, is the expected value of p. This is found by rearranging Equa-

tion (3.5) to read

p = ay/z. (3.7)

We can now find the expected value of p using

3-2

oo

f(p) = /pfp(p)dp>
0

oo

= / ay/zfz(z)dz
-00

OO

00

Setting m = ^y^ and a = \, and consulting the CRC Standard Mathematical Tables [6], 2

we see that

00

ap) = r(f)2^jzmexv{~az)dz (3'8)

a r(m + l)
p (?L\ 2W/2 a' m+l (3.9)

Hence,

m - ° r(!^ + 1) (3io) sw - r/^2w/2/i\(w-i)/2+i ^■1U^

" *^ T(f) • (311)

Equation (3.11) is the exact expression for the expected value of the radius of a weight

vector of length W when each element, Wi, is drawn from a prior distribution which is

N(0,a2). This expression becomes unwieldy for large weight vectors, though, because the

calculations of the numerator and denominator are both functions of W. Since this expression

becomes infeasible for even moderately large values of W, we can seek an approximation for

Equation (3.11) by using Stirling's approximation for the Gamma functions in the numerator

and denominator [6]. The first term in Stirling's approximation states, for x > 10,

3-3

r (x) ~ xx exp (—x) J— = xx 2 exp (-x) V2n,

which is reasonable since we are dealing with large W (W > 20). Using this approximation,

then, yields

r(Bi) (Mj^'-'^pt-m)^
r(f) H (f)^exp(_f)^

Observe a property of Euler's number e [6] is (since VF is large)

lim 1 + — = e.

Substituting property (3.13) into Equation (3.12) gives, for large W,

(3.13)

r(f) ~ e ~ "(If-H)
"(f)

(3.14)

Now, putting Equation (3.14) into Equation (3.11) gives an approximation for the expected

value of p when W is large

£ (p) ~ aVW. (3.15)

Summarizing, if a weight vector, w, of size W has elements drawn from a normal

distribution such that each W{ is N(0,<72), the expected value of the magnitude of that weight

vector, if W is large, can be approximated using Equation (3.15).

3-4

Notice that if we look at the relationship between £ (p) and £ (p2), we find the variance

of p to be

var(p)=£(p2)-K(p)]2. (3.16)

Re-examining a previous variable, z, we see once again that

z = £. (3.17)
a2'

This allows us to find £ (p2) since

«w = «(£

therefore,

t(p2)=o2t(z). (3.18)

This is a simple calculation since Z is a Chi-square random variable with W degrees of

freedom, and the expected value for a Chi-square random variable is simply the number of

degrees of freedom. This leads us to the conclusion

t(p2)=*2W. (3.19)

Notice that in this case (remember that when W is large, £ (p) = o\/W)

£(/) = [£(p)]2. (3.20)

This implies that when W is large, the variance of p is negligible.

3.1.2 Weights Distributed Uniformly. Next we concentrate on the problem of

finding the expected value of the radius when each individual weight is drawn from a uniform

distribution. In ANNs, it is common to initialize the weight vector with small values drawn

uniformly between —.5 and +.5 [12]. Here, we generalize and say the weights are drawn from

3-5

a distribution that is uniform over the region —a to a, (a > 0). This leads to a probability

density function of the form

iw(w) = <
i for — a < w < a

0 otherwise
(3.21)

We wish to find the expected value of the radius, p = Jw\ + w\ + ... + w^y. Define a random

variable X having a pdf

ix(x) = <
\ for - 1 < x < 1

0 otherwise
(3.22)

We can now state that Wi = axi is a uniform random variable from —o to a. This leads to

2 w p = yw\ + w\ + ... + w

= \J(axi)2 + (ox2)
2 + ... + (axwf

= ayz? + x\ + ... + x\y,

which yields

i{p) = £ (a^/z? + si + ... + x^j

= af f ya:f + x| + ... + x\A

We know that

i [\jx\ +X2
2 + ... + X2

w^j = I j_^ ... j_^ y/x\ + X2
2 + ... + X2

W X

Pn(^i)Pi2(
a;2)-Pa;w(a:;VK)da;idx2...dxw,

which leads to

* (a) = (2) /.1 /-i *" /-i V^i + *2 + - + xlr dXldx2...dxw. (3.23)

3-6

The integration in Equation (3.23) does not have a closed form solution so we cannot give

an expression for the expected value of £ as a function of W; but we know the variance of

our random variable, p, is

var(p)=£(/)-[£(p)]2. (3-24)

This leads to

e(p) = ^P^W. (3-25)

Remembering the results of our approximation when the weights were initially drawn from a

normal distribution, namely that var(p) was negligible for large W, then if we can establish

that this is the case when the weights have a uniform distribution as well, we can estimate

f (p) using

* (p) = fti?)- (3-26)

We first need to calculate £ (p2). We define a random variable, y, such that

y = w\ (3.27)

Using the Square Law from Thomas's book [70], we find that the pdf of y is then

fy(y)H ^ for0<^<a (3 2g)
0 otherwise

First,

and

iW (-y/y) = ^ for - a < -y/y < 0, (3.29)

iw (y/y) = 2^ for 0 < y/y < a. (3.30)

But multiplying the limit terms on the negative radical by —1 yields

fw (-y/y) = g- for a > y/y > 0

= — for 0 < y/y < a.

3-7

Now squaring the limits gives

and

Finally, we have then

iw (-y/v) = 2a
for 0 < y < a2,

tw(Vv) = l for 0 < y < a2.

Ml/) = <
2o12o

0

for 0 < y < a2

otherwise

f i for 0 < y < a2

0 otherwise

We will need the expected value of y,

00

£ (y) = j yfy (y) dy
—00

0,2 1
JQ
y2a~^dy

1 °2

a'
y

Now, if we define z again to be

z = y\ + 2/2 + - + 2/w,

then we know

() = W^fa)

3

(3.31)

(3.32)

(3.33)

3-8

So then, with

we have

P =z,

S(P*) = wa-

(3.34)

(3.35)

Now, remember that we are trying to establish that var(p) becomes negligible as W

increases. Although £(p) = a£ (Jx\ + x\ + ... + x\r) cannot be found analytically, we can

use numerical integration to establish its behavior as W increases, thereby establishing the

behavior of ap as W increases. For this exercise, it will be convenient to re-express Equa-

tion (3.24) in the form

£(P2) lt(p)f
az a1

a
W
3
W
3

+ x2
2 + + xw

)

f-j / / ... / yxj + xj + ... + x$vdxidx2...dxw

Approximating the integration in the above expression numerically for values of W from 1 to

10, we can glean the behavior of the variance of the complexity as W increases. Figure 3.1

shows how the variance of the radial complexity decreases with increasing W and Figure 3.2

demonstrates how the expected value of the square of the complexity grows along with the

square of the expected value of the complexity with increasing W. Figure 3.3 shows the

difference between the calculated approximation of £(p) and the average magnitude of p

observed when initializing a set of weights using a uniform distribution and this analysis

supports our use of the approximation in Equation (3.36).

From this analysis, it is reasonable to use the approximation of Equation (3.26) and

estimate the expected value of the complexity as

tip) a (3.36)

3-9

U.UÖ4

0.082

 r T i i i i i i

0.08 \

0.078 \

4.076 \

0.074 ^V

0.072 ^^^^

0.07

i i i i i i i i

4 5 6 7
Number of Weights, W

10

Figure 3.1 Demonstration of the decay of the variance of the radial complexity, (^f)2, with
increasing W.

With the determination of the expected initial radial complexity, what is the behavior of

that radial complexity during different types of weight training?

3.2 Consistent Behavior of Radial Complexity During Training

One method of determining when the weights in the ANN are "good enough" is based

on the training error; once the training set error is at or below some specified value, one

can discontinue training and test the ANN's ability to classify a test data set [7,59]. Having

shown that the distribution used to initialize the weights determines the expected value of

the initial radial complexity of the weight vector, it is desired to establish the relationship

between the radial complexity and the training error during training of the ANN since this

radial complexity contributes greatly to the ability of the ANN to generalize well to new

data. In this section, we demonstrate one aspect of the behavior exhibited by the radial

complexity during training of an ANN using standard backpropagation and regularization

with sum-squared and softmax error on the OCR and TESSA data sets. Using an ANN with

3-10

4 5 6 7
Number of Weights, W

10

Figure 3.2 Demonstration of the growth of the expected value of the radial complexity
squared and the square of the expected value of the radial complexity with
increasing W.

3-11

OA

Observed

10
W

Figure 3.3 Demonstration of the growth of the approximate expected value of the radial
complexity (dotted) and the average observed magnitude of the radial com-
plexity (solid) with increasing W. The plot on the top shows that, for small
W, the approximation is not very good; but the plot on the bottom shows that
for increasingly large W, the approximation is much better.

3-12

70 hidden nodes and 10 output nodes (one for each class), the demonstrations in this section

show an almost deterministic behavior of the radial complexity as the training occurs. In

Figures 3.4, 3.5, 3.6 and 3.7, looking at the plots in each figure going from left to right,

the weights are re-initialized using values drawn from a prior Gaussian distribution which is

set for low radial complexity (£(p) = .1) for standard backpropagation or high complexity

(£ (p) = 95) for Bayesian backpropagation. Each figure consists of 5 different runs from left

to right. The only difference between each plot is that the weights are re-initialized using

the same distribution each time. The complexity measure is that of radial complexity, or

the magnitude of the weight vector. Figure 3.4 shows the consistency of radius growth when

using SSE and standard backprop on the OCR data set, Figure 3.5 shows the consistency

of radius decay when using SSE and Bayesian backprop on the OCR data set, Figure 3.6

shows the consistency of radius growth when using softmax error and vanilla backprop on

the OCR data set, and Figure 3.7 shows the consistency of radius decay when using softmax

error and Bayesian backprop on the OCR data set. Notice that as the training ensues, even

though the weights have been randomly reinitialized each time, the way the error and radial

complexity change is consistent; that is to say that the error and radial complexity change

in the same manner with each subsequent run.

This consistent behavior leads us to the conclusion that, when basing the stopping cri-

teria on the training set error, the final radial complexity of the ANN is the same to within

the variance of the initial magnitude of the weight vector; but is the training method respon-

sible for the consistent behavior of the radial complexity? The next section demonstrates

the results of using a non-backpropagation training method for the weights.

3-13

2000

1500

1000

500 \

50 100 50 100 50 100 50 100 50 100

10 10 10 10 10 /

01
e. 6

8 8 8 8

6 6 6 6 1
s« 4 4 4 4 I

2 2 2 2 2 U

50 100 50 100 50 100
Epoch

50 100 50 100

Figure 3.4 Each plot along the top row tracks the training set error versus the training
epoch while each plot along the bottom row demonstrates how the magnitude
of the weight vector changes as training ensues. Each column is an independent
training run with the only change between columns being the re-initialization
of the weight vector.

3-14

6000

5000
'

4000

3000 y
2000 V_ V^ v^ ^_

50 100 50 100 50 100 50 100 50 100

95.5 96
93

95
93

i
^ 95

J94.5

§ 94
u

93.5

95

94

92

91

94

93

92

91 \

93
90 9?

90 \
50 100 50 100 50 100

Epoch
50 100 50 100

Figure 3.5 Each plot along the top row tracks the training set error versus the training
epoch while each plot along the bottom row demonstrates how the magnitude
of the weight vector changes as training ensues. Each column is an independent
training run with the only change between columns being the re-initialization
of the weight vector.

3-15

4000

3000

n
2000

1000

50 100 50 100 50 100 50 100 50 100

10 10 10 10 10

*8 8 8 8 8 /

26
1 O 4

6

4

6

4

6

4

6

4 /

2 2 2 2 2 /

50 100 50 100 50 100
Epoch

50 100 50 100

Figure 3.6 Each plot along the top row tracks the training set error versus the training
epoch while each plot along the bottom row demonstrates how the magnitude
of the weight vector changes as training ensues. Each column is an independent
training run with the only change between columns being the re-initialization
of the weight vector.

3-16

xlO4 xlO4 xlO4 xlO4 xlO4

2.5
2 2 2

2
1.5

1.5
1.5 1.5

1.5

1
1

1 l 1 1 1

0.5 0.5 0.5 v 0.5 0.5 V
50 100 50 100 50 100 50 100 50 100

95

'§94

t
U93

92

94
95

94

93
93 \

94 93

92
92 \

93 92
91

50 100 50 100 50 100
Epoch

50 100 50 100

Figure 3.7 Each plot along the top row tracks the training set error versus the training
epoch while each plot along the bottom row demonstrates how the magnitude
of the weight vector changes as training ensues. Each column is an independent
training run with the only change between columns being the re-initialization
of the weight vector.

3-17

3.2.1 Consistency of Training Behavior When Using EP Training. The consistency

demonstrated above is not a result of using backpropagation. Backpropagation is not the

only method for setting the weights in an ANN. In fact, the final form the weight vector

takes should be independent of the method used to obtain that vector. Evolution programs

provide an alternative method for ANN weight training. The EP technique discussed in

section 2.3.1.3 was used to analyze the behavior of the radius as shown in Figure 3.8. This

45 45

40 \ 40

u 35

I ™ 30
\ 35

\ 30

25 \ ffi

?0 ■ ■ 20

£. 16
■a

0 100 200 0 100 200 0 100 200 0 100 200 0

Epoch

100 200

Figure 3.8 Each plot along the top row tracks the training set error versus the training
epoch while each plot along the bottom row demonstrates how the magnitude
of the weight vector changes as training ensues. Each column is an independent
training run with the only change between columns being the re-initialization
of the weight vector.

figure demonstrates how the radial complexity behaves when using an evolution program.

The squashing function is incorporated into the EP to preclude getting the same solution.

The radial complexity also displays consistent behavior when being trained using the EP.

Clearly, the behavior of the radial complexity as the ANN training seeks out a weight vector

yielding a minimum error is not dependent on the backpropagation of error routine.

3-18

The above analysis was carried out on a hand-written character set. Does this data set

give rise to an error surface that would cause the radial complexity to exhibit this consistent

behavior? The next section shows that different data also gives rise to this type of behavior.

3-19

3.2.2 Consistency of Training Behavior When Training on TESSA Data Set .

Would the radius still exhibit the same consistent behavior on a different data set than

the character data set in the previous section? The TESSA data set contains infrared

images that are very hard to classify. Training on this data set reveals that the radial

complexity behaves consistently during training even when the network is not converging

to a solution (Figure 3.9). This figure demonstrates the consistent behavior of the radius

0 200 400 0 200 400 0 200 400 0 200 400 0 200 400

Epoch

Figure 3.9 Each plot along the top row tracks the training set error versus the training
epoch while each plot along the bottom row demonstrates how the magnitude
of the weight vector changes as training ensues. Each column is an independent
training run with the only change between columns being the re-initialization
of the weight vector.

when training on the infrared target data set. Note the consistency with which the radius

behaves even when the error is not converging to a solution. Once again, we see that the

behavior of the radial complexity remains consistent between runs even when the weights

are re-initialized to different random values each time.

This analysis of the behavior of the radial complexity during training also gives us

better insight as to how cross-validational early stopping limits the magnitude of the weight

3-20

vector; the training (and therefore the growth of the radial complexity) is stopped earlier

than if training set error were the stopping criterion.

The consistency of behavior of the radial complexity is independent of the training

method and the data set. Having shown in this section that re-initializing an ANN with

a different set of weights drawn from the same distribution does not guarantee a different

radial complexity when training is complete (in fact, training to some set training error

will most likely put us into the same radial complexity every time), and that the radial

complexity consistently changes during training, we need a way to estimate at what radial

complexity to halt the training so that we can achieve good generalization after the training

is complete. The next section presents the steps taken to obtain a good generalization radial

complexity and then train to that complexity. Cross-validation plays a key role in empirically

establishing the relationship between generalization error and radial complexity.

3.3 Cross-Validational Radial Complexity Estimation

When using the full data set as the training set, we cannot use cross-validatory early

stopping since we now have no data for a cross-validation set. We can, though, estimate the

expected radial complexity for the full data set that will provide enough constraint on the

discriminant boundaries such that a Bayes optimal discriminant function is best approxi-

mated. White [83] describes how the structural complexity of an ANN grows as the number

of training data points, or experience, grows. Bartlett [4] augments this analysis with his

proof that the magnitude of the weights (quantified here as the radial complexity) can be

more important to generalization than the number of weights. Therefore, in classification

problems for which ANNs are well suited, the effective complexity should also grow in the

same manner as the structural complexity when the training data set grows [7,59]. Estimat-

ing the radial complexity allowed for a data set of size N that provides good generalization

characteristics is accomplished by using cross-validation on smaller data sets, slowly adding

more data and each time using cross-validation; this allows us to see how the radial com-

plexity that achieves good generalization grows as the size of the data set increases. Using

regression on these radial complexities (letting the radial complexity be a function of M, the

3-21

number of training points), we can infer the final expected radial complexity of the ANN

that will provide good generalization characteristics when training using the entire data set,

and use hyperspherical backpropagation to train at that radial complexity. This allows the

use of all data to train the ANN and still expect good generalization characteristics when

training is complete.

3.3.1 Generalization Error. Let the training set be,

Dtrain = {(x^.t«), •••, (x<">, t<">)}, (3.37)

and the loss function be I (Dtrain,wT). The error function on the training data set is,

1 N

Etrain (w) = — £ I {Dtrain, w) . (3.38)
n=\

Using any learning rule (e.g., backpropagation), one gets a sequence of weight vectors, {wT},

where r is the time step taken by one pass through the training data (one epoch). The loss

function is typically either the least square error

I (Dtrain, WT) = \ £ \t^-Vk (x<»>, WT) f ,
fc=l

or the softmax error

I (Dtrain, WT) = - £ #> In Vk (x<"\ WT) .
fc=l

The generalization error for a given weight vector, w, is the expected value, £ [•], of

the loss function over all possible future example test data sets,

Egen (w) = iTest [I (Dtest, w)]. (3.39)

Optimally, the trained network will yield the minimum generalization error,

£flen = min[£9en(w)],

3-22

and is therefore defined as

E*gen = ^ l^Test \l (Dtest, w)]] .

Given a cross-validation data set,

^ = {(x«,t«),...,(xW,e))}, (3.40)

the error on the cross-validation set is,

1 N

Ecv{w) = —Y,l(Dcv,*r)-
n=l

The generalization error can be approximated as

Egen (w
T) ~ Ecv (w

T),

where r is the time step, or epoch. If cross-validational early stopping is used, then the

optimal generalization error can be approximated as,

£;en~min[£UwT)].

The ability of the network to form complex discriminant boundaries is quantified using the

radial complexity, p, therefore we are trying to empirically establish the relationship between

the generalization error and the radial complexity. Given,

Egen(vr) = f U/wl +W% + ... + wlA

= Egen(\\vr\\),

then the generalization error can be expressed as a function of p such that p = \ |wT* 11, where

r*is the integer where training is stopped. The approximate generalization error can then

3-23

be represented as,

Egen(\\wT'\\)~Ecv(wTm),

therefore

Egen{p)~Ecv(vrT*). (3.41)

If several training and cross-validation sets are available, the expected optimal generalization

error as a function of p is then estimated by taking the average minimum error over all cross-

validation sets

Elen (p) * i E kin [Ett (P)]l > (3-42)
V g=i L f J

where .E^is the error on the cross-validation set at the qth run, and Q is the number

of separate cross-validation runs. Note that the dependency of the approximate optimal

generalization error on the radial complexity is now explicit since individual solution weight

vectors are not the desired outcome, but instead the relationship between generalization

error and the magnitude of the weight vector is of primary interest.

Define the optimal radial complexity, p^\ for a data set of size Mt at run q as the one

that corresponds to the weight vector that yields minimum error on the validation set for

that run. The optimal radial complexity, pOPT, for a classification problem represented by

subsets of size Mt can then be defined as the average of the radial complexities indicated by

cross-validational early stopping on those data sets,

Q

P^PT = ^E<
)
- (3-43)

Q 5=1

This average radial complexity is the one that yields the average minimum cross-validation

error over the Q cross-validation runs. The minimum radial complexity is not what is sought

since the radial complexity indicated by each cross-validation run will be dependent on how

closely matched the randomly chosen training set is to the randomly chosen validation set.

3.3.2 Early Stopping at the Estimated Radial Complexity. As the number of train-

ing data points grows, the expected good-generalization radial complexity grows as well. We

3-24

trained an ANN so as to obtain 15 different radial complexities. The radial complexities

demonstrated increasing growth with increasing number of training data points. Each radial

complexity was an average over 100 runs whose training and validation data was randomly

drawn from the larger data set. Figure 3.10 shows the results of using cross-validation on

data sets with 5 training data points from each class, while Figure 3.11 shows the results of

120
\ M = 5'

100

80 ■ 1

60 1
40 \\

20

■ ^-

10

120
\ M = 5

100 -I ■
80 ■1 ■
60

\\ '
40

\
20

■ \ ■

220 \ M = 5 '

300

\ '
80

■\ ■

60 ■ 1 ■
40 ■ \\y-

20 ' V
10 0 10 0

Radial Complexity
10

Figure 3.10 Cross-Validation result for 5 training data points from each class.

using cross-validation on data sets with 50 training data points from each class. Once again,

the plots in each figure show the error versus the radial complexity. The radial complexity for

good generalization in each plot is that which leads to minimum error on the validation error

curve. The difference between each plot in a given figure is re-initialization of the weights

and choosing a random data set for training/validation. Looking at these two figures, we

see that the radial complexity yielding good generalization (where the upper validation error

curve is minimum) grows as we increase the number of training data points. Training was

done for 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, and 75 data points from each

class.

3-25

0 10 20 0 10 20 0 10 20 0 10 20 0 10 20

Radial Complexity

Figure 3.11 Cross-Validation result for 50 training data points from each class.

Figure 3.12 shows the average good generalization radial complexity calculated for

each size data set. Using regression on this data, we can estimate the radial complexity for a

large number of training data points which yields good generalization. The radial complexity

estimated for 100 data points that yields good generalization is on the order of 22. Looking

at Figure 3.13, notice that a radial complexity of 22 is indeed representative of the region in

which the error on the validation set begins to increase.

We randomly generated a small data set (100 vectors from each class) from the TESSA

data (3 class) to be used as the training data set and constructed an ANN with 70 hidden

nodes. Using the technique described in the previous section, we used cross-validational

early stopping with half the training data as validation data and half remaining as training

data. The generalization error was then estimated as the error obtained on the remaining

data (containing about 10,000 points) as per Equation 3.42. The radial complexity expected

to provide good generalization for the full data set was estimated, and the small data set

was trained until the radial complexity reached that value. The effects of overtraining can

be seen in Figure 3.14. Overtraining yields a percentage of correctly classified test points of

3-26

25

20

—i a,
I
U

<2
15-

10

* :
- i : : * * " ::::*::

: * :
* *

::*:::: *
:*:::::
: * :

- *' : : : : : : -

*

"0 10 20 30 40 50
Number of Training Data Points

60 70

Figure 3.12 Growth of the radial complexity providing good generalization as a function
of the number of training data points.

2000

2500

I
1000

M=100

Figure 3.13 Cross-Validation result for 100 training data points from each class.

3-27

1200

1000

~\ 1 1 r

2000 4000 6000 8000
Epoch

10000 12000 14000 16000

Figure 3.14 Using cross-validation, we can see that the error on the validation set grows
rapidly even as the training error decreases.

51.75%. While cross-validational early stopping improves the correct classification rate to

61.12%, the best classification rate of 63.28% is achieved when using the full data set and

stopping training at the estimated good generalization radial complexity, pN. These results

are summarized in Table 3.44.

Stopping based on:

Percent correctly classified

■^train E ±Jcv PN

51.75% 61.12% 62.75%
(3.44)

Each result is an average classification rate over 10 runs. The observed classification accuracy

when using the full data set improves 3% over that observed when using a smaller part for true

cross-validational early stopping, and over 14% over that observed when stopping training

when a low error on the training data is reached.

We have already shown how standard training of the ANN leads to a consistent change

in the radial complexity during training of the weights, so moving the coordinate system

in which the weights are represented from Cartesian to hyperspherical allows us to lock in

3-28

the radial complexity while changing the other parameters. By converting our coordinate

system from Cartesian to hyperspherical (outlined in Appendix B), we can influence the

parameters of the weight vector not associated with the radial complexity (magnitude of the

weight vector).

3.4 Training at a Fixed Radial Complexity

Now that we have estimated at which radial complexity to train our network to obtain

good generalization, what would the effect be of restricting training to that radial complexity?

This analysis can be carried out by using hyperspherical methods such as an Evolution

Program or hyperspherical backpropagation which operate on the angles only. Since we

have defined our effective complexity in terms that are complementary to the hyperspherical

coordinate transformation, hyperspherical methods such as these provide an ideal way to

confine a weight vector to a specific radial complexity during training.

3.4-1 Genetic Approach. Using EPs we can generate a population of weight vectors,

convert them to hyperspherical coordinates, use evolution on the angles, and obtain a solution

that maintains a constant radial complexity. Figure 3.15 shows the results of using an EP to

train the ANN at a given radial complexity to classify the hand-written character set. The

220 r Training Error

200

_ 180

160

140

120

w

0 50 100 150 200 250 300

Epoch

350 400 450 500

Figure 3.15 Using an EP to train the ANN at a specific radial complexity.

error used is the same error used with backprop, but the weight angles are updated using

genetic methods rather than backpropagation methods. Each training epoch here is not just

a pass through the training data, but a pass that yielded a lower error than the previous

3-29

iteration. This method demonstrates the tendency of the training error to decrease, but is

very slow compared to hyperspherical backpropagation which constrains the weight updates

to travel in the direction of a lower error.

3.4-2 Hyperspherical Backpropagation Approach. Dunne first suggested transform-

ing the weight vector using polar coordinates (since he was working with only 2 weights) [17]

to analyze the behavior of the weights over time. That research was limited to a very small

dimensional weight space; here we allow for any number of weights since real-world problems

usually demand a very large network to reach a solution. Thus, we use the term "hyperspher-

ical" coordinates to denote any radial coordinate system that has more than three Cartesian

coordinates as its starting frame of reference. Given that there is some ideal hypershell in

which lies the weight vector that provides the best generalization, then one hopes this weight

vector radius is what the training methods limiting weight values seeks; once we determine

this value, we should confine the training of the weight vector to that radial complexity

so as not to harm the generalization characteristics of the trained ANN. Here, we refer to

any method that updates the weights using a combination of standard backpropagation and

hyperspherical coordinates as hyperspherical backpropagation. If we desire to update the

angles directly, then we need to know the effects of changing those angles in hyperspherical

coordinates, i.e., what is the change in the error due to a change in a given weight vector

angle?

For hyperspherical backpropagation, we have

0T+1 _ QT _
V

dED (6T)
d9

(3.45)

For notational convenience, we will arrange the angles in the same manner that we

arrange the weights. Let the weights be expressed as

W\ =

W2 =

Wll Wl2 ••• W\R

W21 W22 ••• W2S1

3-30

where

WT =

and

W2] =

Wl2,i

Wlsm

= 1,2,...,R ,

i = l,2,...,Sl

WIKJ

Let a concatenated (column) weight vector, w, be

w = (Wl1) (Wl2) •■■(W1R) (B1)T (W21) (W22) •••(W2S1) (B2)q

= [wi w2... ww]T •

Now the coordinate transformation from Appendix B can be used to yield a vector of angles

and a magnitude such that

W = [01, 02i---,0W-li pf

\ewll)T (ewl2)T ...(^y (9m)T (oW2l)T (eW22)T ...(eW2S1)T (eB2)T^

gW2 =

gWl1 ßWl2 < % # gWlR

QW2
1
 QW2

2

3-31

iwa

iBl

<\W2

9ai =

aWl
^1,1

yi,2 • * ' U1,R

^2,1 ^2,2 y2,Ä

°S1,1 aSl,R .

0f
Bl

iBl

iBl
*S1

^1,1 yi,2

/)W2 /)W2
^2,1 p2,2

aW2 aW2
°K,\ °K,2

B2 n
6: B2

aW2
V1,S1

aW2
°2,S1

aW2
°K,S\

Accordingly, we assign the angles to a given weight as

Wljti = p sin #i sin 82 ■ ■. sin 0j|j_i cos 0 -^ , (3.46)

where the subscript j,i — 1 simply implies the angle preceding the ji angle in the W-

dimensional weight space. Similarly,

Blj = psin0i sin02...sin0B_1
1cos0B1,

■\W2 W2kij = psin01sin02...sin0^1cos0fe7,

(3.47)

(3.48)

3-32

and

iB2 aB1 B2k = psm61smO2-8m9%l1cos0%2. (3.49)

The angle updates are derived in Appendix B as

n=l

(-zjWkj tan9lf (T) + 2fo+1)W2fe(j+1) cot 0™» (r) + ...

+^i«;fcsi cot ö^2 (T) + bk cot 0£? (r)),

N

I
n=l

«f (r + 1) = Of (T) - „ £ (s/W - (<"») (-B2* tan Of (r)), (3.50)

ej> (r + 1) = *]« (r) - , £ £ (y<"> - 4"') W^" (l - *<»>) x
n=lfc=l

fa (-Wl,, tan 0™ (T)) + *(i+1) Wli(4+1) cot 0™ (r) + ...

+a*WliÄ cot 0$ (r) + Bl, cot 0™1 (r)),

and

El
n=lfc=l

Of1 (r + 1) = 9f (r)-^E (v?° " *in)) W2fci *<"> (l - *<»>) {-Bl, tan 0f (r)), (3.51)

where 77 is the step size coefficient, r is the time index (epoch), and Zj is the output of hidden

node j.

For the purpose of maintaining a constant radial complexity, another method of per-

forming hyperspherical backpropagation is to update the weights in Cartesian coordinates

using any standard backpropagation technique, converting the new weights over to hyper-

spherical coordinates, resetting the magnitude parameter to the previous value, and then

converting back to Cartesian coordinates. These two methods are theoretically identical

(although there are limitations that must be placed on the angles since they are limited to

certain regions), and there is no appreciable difference in implementation time since both

3-33

must convert the weights over to hyperspherical coordinates after each weight evaluation and

update.

Here, we use hyperspherical backpropagation to find a solution weight vector at a

constant radial complexity. A comparison of standard backpropagation versus hyperspher-

ical backpropagation when classifying the hand-written OCR data set is presented in Fig-

ure 3.16. Notice that cross-validational early stopping would cause the ANN to stop training

200

150

100

50

Validation Error with Standard Backpropagation

Validation Error with Hyperspherical Backpropagation

Training Error with Standard Backpropagation

500 1000
Epoch

1500 2000

Figure 3.16 This figure demonstrates how using standard backprop to train an ANN on
the hand-written character set compares to using Hyperspherical Backprop
to train the ANN at a specific radial complexity. Notice that without hyper-
spherical backpropagation, the algorithm overtrains and begins to suffer from
an increase in the validation set error.

at about 100 epochs, and without hyperspherical backpropagation to lock the radial com-

plexity in place, the algorithm overtrains thereafter and begins to suffer from an increase in

the cross-validation error which indicates less than optimal generalization. With hyperspher-

ical backpropagation, the error on the validation set not only does not increase, it continues

to decrease. This is due to the ramifications of limiting the complexity and yet continuing

the training; since the corners of any two intersecting decision sigmoids can only be so sharp,

3-34

the weight updates must lower the error by shifting the global positions of the discriminant

boundaries rather than going after outliers.

3.5 Summary

The determination of the initial radial complexity of an ANN based on the prior dis-

tribution used to generate our initial weight vector was discussed. This quantity determines

the starting point of the ANN training algorithm, and should be of primary concern when

initializing the weights. Research in the past has initialized the weights without regard for

this quantity, simply using the same initial distribution for each weight regardless of the

number of hidden nodes. As demonstrated, though, the initial radial complexity grows with

the number of weights in the ANN so the parameters of the distribution (bounds or variance)

from which each weight is drawn should change as the number of weights is changed.

By examining the behavior of the radial complexity during network training, we cast

doubt on the practice of re-initializing an ANN with weights drawn from an identical dis-

tribution as previous initializations. The behavior of the radial complexity is a function of

the training, the error function, and the method of training, but given these quantities, the

behavior is consistent and not a function of the random values to which the weights are ini-

tialized (although it is a function of the distribution from which the weights are initialized).

Knowing the initial radial complexity and how this radial complexity behaves as the

training set grows, we then showed that the radial complexity of an ANN that yields the best

generalization for the full training data set can be estimated by using cross-validational early

stopping on smaller size data sets, then using regression on those resultant radial complexities

to obtain the radial complexity allowed by training the ANN with all available data, thereby

allowing the data to constrain the decision boundaries as much as possible. With this

development of radial complexity estimation, we now have a method of training an ANN

with standard backpropagation techniques and yet confining the magnitude of the weight

vector to a desired radial complexity so as to maintain good generalization characteristics.

As an example, we showed how this method provided a better estimated general classification

3-35

accuracy than true early stopping. This technique is quite useful since the generalization

characteristics of the ANN are the primary concern of the end-user.

Finally, we showed how hyperspherical backpropagation can lead to decreased valida-

tion error during training of the ANN. By limiting the radial complexity to an estimated

magnitude, here estimated using cross-validational early stopping, we have forced the ANN

to lower the error by shifting the location of the overall discriminant boundaries rather than

overtraining on the outliers.

3-36

IV. Conclusions and Recommendations

4-1 Conclusions

Here, we reviewed that the primary consideration when training an ANN is the ability

of the trained network to generalize well [7,59]. Methods such as cross-validational early

stopping and regularization attempt to find a solution at an effective complexity yielding

good generalization (since the effective complexity of the network determines its generaliza-

tion ability [14]). In light of the research done by Bartlett [4], the effective complexity was

quantified as the magnitude of the weight vector (radius of the hypershell defined by the

weight vector), and here referred to as the radial complexity.

The expected value of initial radial complexity of the ANN was shown to be an increas-

ing function of the number of weights (based on the distribution from which each individual

weight is drawn). This expected initial radial complexity is important regardless of the meth-

ods used to train the ANN since the initial radial complexity needs to be set appropriately

so as to assure growth or decay into a radial complexity that yields good generalization.

The behavior of the radial complexity during training was seen to behave in a consistent

manner from run to run even when the weights were re-initialized to different starting values.

This behavior was shown to be independent of the data set and in fact was independent of the

type of training (provided the weights were being guided toward an area of lower perceived

error over the training set).

Radial complexity estimation for early stopping was shown to lead to superior gen-

eralization when used to train an ANN to a desired radial complexity, and hyperspherical

backpropagation was seen to consistently decrease the validation error during training. No

previous technique has attempted to obtain a solution that would remain at a specific com-

plexity calculated to provide improved posterior probabilities as measured by the validation

error.

4-1

4-2 Recommendations for future Research

Global minimum search techniques, questioned by Lawrence [33] for standard back-

propagation, can be used with hyperspherical backpropagation with the constraint that the

weight vector remains at a specific radial complexity. This hypershell global minimum (min-

imum obtainable training error at a given radial complexity) would yield the lowest error in

that hypershell, and yet maximize the generalization capability of the ANN.

All methods used to speed up standard backpropagation, such as momentum and

instantaneous backpropagation [12], are usable with radial complexity estimation and hy-

perspherical backpropagation, so there is immediately a plethora of algorithm tweaks to

optimize training speed. Ideally, a number of solutions need to be obtained at a given radial

complexity to form a committee of networks which also can help improve generalization [7]).

This research briefly mentions the relationship between the regularization coefficient,

a, and the radial complexity, p, when using Bayesian backpropagation to train an ANN. A

logical next step would be to use the technique of radial complexity estimation to determine

the optimal a to use during Bayesian backpropagation to provide a result that is based on

the expected generalization ability of the final weight vector.

4-2

Appendix A. Weight Update Formula

A.l Standard Batch Backpropagation

To update each weight, we use the equation

aw

where r is the time step, r\ is the step size, and w is an individual weight. Realizing that

ED = Z 4n), (A.2)

where, for softmax error,

4n) = -E4n)in(yin)),
Jb=l

or, for sum-squared error,

*£'-5 EOT-«£")'•
we can carry out the analysis as follows.

A.1.1 Second Layer Weight Update. First, we will update the second layer weights.

Using the chain rule, we see that

dEP = dE^daP
dwkj flog») dwkj ■ K^>

From Bishop [7], we know that

dED] - (..w_tm

dwki
3 ' Jkj

A-l

whether we use softmax or sum-squared error. Therefore

dwkj

And

"fr={#)-4'W)- (A.4)

<'=<»«-<) £(ä/l")-<i"))#)- (A.5)
n=l

A.1.2 First Layer Weight Update. The first layer weight update is carried out by

setting

dwß ti daP dzf daf dWji'
K ' >

We already know 77^-, so now we determine
da

daf ~ j V j >

dwji %

This leads to

Therefore

^ - E E (nS" - 4*') «wj" (1 - 4") &■ (A.7)
17 "0'* n=l fc=l

N K

El
n=lfc=l

^ = «$-•? E E (»J° - #°) MB) (1 - *jn)) *Sn). (A.8)

The step-size parameter 77 (e > 0) has been the subject of much research and is usually

chosen to speed the training process. If 77 is chosen to be constant for each weight update

(as is sometimes the case), we note that the step size is a linearly increasing function of the

training set size, N. To eliminate this dependency of the step size on N, we choose to make

V=^, (A.9)

A-2

where c is a constant.

A.2 Weight Updates with Regularization

With our regularization, we see that, in a generic case,

ftg(w) = dED(w) + dEw(w)^
dw dw dw

But ^^ is *ne same as in Appendix A. The only change is the addition of ^J^1. This is

simply
dEwjw)
—dw~ = aW> (A-U)

which leads to

<r = <J-^fEE(yin)-4n))?) + ^)
\n=lfc=l /

A-3

Appendix B. Hyperspherical Coordinate Transformation

Given a weight vector

w=[w1,w2,...,ww], (B.l)

we wish to generate a hyperspherical representation such that

w=[0i,02l...,0w_i,p], (B.2)

where

Wi = pcos6i,

w2 = p sin #i cos #2,

tu3 = p sin 91 sin Q2 cos #3,

(B.3)

Ww-i = psin0isin02sin03...sin0vi<'-2COs0vK-i,

ww = psin0isin02sin03...sin0vK-2sin0vK-i- (B-4)

Generating the angles is a matter of bookkeeping. All angles (except dw-i) are in the

interval [0,7r), while dw-i is in the interval [—IT, 7r]. The angles $1, ...,9w-2 are necessary to

project w into the next set of dimensions while 6w-\ is confined to two dimensions. The

radius and angles are then found as follows:

p = yjwl + w\ + ... + w^,
IÜ1

0i = arccos[—], (B-5)

02 = <
arccos[^fe] »1^0

0 0i =0

B-l

09 = <

ö\V-2 — '

Qw-i — i

arccosf .?*.„] 02 ± 0

0 02 = 0

arccosf—r—%—."T-2 • a 1 6w-^ 9^ 0

0

— arccos

0W-3 = 0

,ü^] ww < 0
psinöi sin02-"Sin#iy-2

+ arccosf—T-ä—jf^^i-T-T 1 ww > 0
ipsinöi sin »2 ••• sin 0^-2' —

0

(B.6)

(B.7)

Ow-2 + 0

0W-2 = 0

(B.8)

where arccos denotes the principle inverse cosine function. With these relationships, we

can freely change the hyperspherical parameters of a given weight vector to see how those

changes affect the error.

B-2

Appendix C. Derivation of Angle Updates for Hyperspherical

Backpropagation

For completeness, we derive the angle updates when using hyperspherical backprop.

C. 1 Second Layer Angle Update

First, we will update the second layer weights. Once again, remember that

n=l

Using the chain rule, we see that

dEP dED daP
dOkj daP d9kj

From Appendix A, we know that

(C.2)

.ö«iB)
Now, we need to find^—. We know that

4n) = zxwkl + ... + ZjWkj + zu+1)Wku+i) + ... + zsiwkisi + bk. (C.4)

This leads to

w/^ = d^ZlWkl + - + WiWki + ^(j+1)Wfc(j+1) + - + dö^*31"""31 + m^
ft ft ft ft ft

= zid9^wki+-+z^wki+z^wrk{j+x)+■■■+*5i^fe>si+w^-

Let us look at each term;

wkj = psinöi sin02 sin03... sin0fc(j_i) cos9kj, (C.5)

C-l

so

—— wkj = psinöisinÖ2sinÖ3...sinö/fc(j_i)^—cosöfcj

= p sin öi sin 02 sin #3... sin 0fc(j_i)(— sin 9kj)

= psm di sm 02 sin 03... sin 0fcr,-i) a (~ sm 9kj)
COS Pfcj

(-sin0fcj)
= Wkj~ Z~"^ COS 9kj

= -Wfcjtanöfcj,

—--tüfcü+i) = /9sin0isin02sin03...—— sin 0fej cos 0fe(j+1)

= p sin #! sin 02 sin 03... cos 0fcj cos 0fc(j+i)
sin0;

sinöfcj
= p sin 0i sm 02 sm 63... . cos 0fc(j+i) cos 0fcj

cos 0fe,-
sm (7fcj

= WfcO+i)Cot0fcj,

6fe = /9sin0isin02sin03...—— sin0fcj...sin0fcsicos0fc
d9kj

r ' ' ° d9kj

= p sin 0i sin 02 sin 03... cos 9kj... cos 0fcsi cos 8k

sm9kj = p sin 0i sin 02 sin 03... ———- cos 0fe5i cos 0k sm dkj
_ cos ekj

sin 9kj

= bkcot$kj.

This leads to

-ak
n) = O+0+...+Zj (-wkjta,nekj)+Z(j+i)Wk(j+1)Cot9kj + ...+zslwksicot9kj+bkcot9kj. d9kj

(C.6)

C-2

Therefore

i)Ei(n)

-Qf- = (?/in) - 4n)) (-ZjWkj taRdkj + z{j+l)wk(j+1) cot9kj + ...

+ZsiWkSl COt 9kj + bk COt 9kj),

and

AT

£
n=l

Olj1 = Qlj ~ *7 Z {yin) - 4U)) (-ZjVkj tan^fcj + z^+^w^+i) cot öfcj- + ...

+*siWfcsi cot öfci + 6fc cot 6kj),

with
N

I
r»=l

C1 = »I " »? E (vJ° - 4n)) (-bkj tan 0fc). (C.7)

C.,2 First Layer Angle Update

Now, the first layer weight update is carried out by setting

8ED _ f f c?4n) daP dzf da™

We already know —$j-, so now we determine

&**
(n)

dz3

n (n)

oaf " j l *' j

We can find -xjh- in the same way we found ~^— 69j,

■ää~aj = 0 + 0 + ... + Xj (-Wji tan6ji) + X(i+i)W^i+1) cot 6ji + ... + xRwjRcot 0jj + bj cot 0^.

(C.9)

C-3

This leads to

dE N C

~ = E E (v*0 - 4n)) Vkjzf (l - zf]) (Xi (-Wji tan On) + x{i+1)wj{i+1) cot 9j{ + ..
^J* n=l fe=l

+XRWJR COt 0jj + 6j COt 0jj).

Therefore

JV c

El
n=lfc=l

Ö?1 = V» ~ V E E (»J° ~ 4n)) to« ^B) (l - zf) {Xi (-Wji tan %) + x(i+1)^(i+1) cot % + ...

+xRwjR cot öji + bj cot fyj),

and
JV c

EX
n=lJb=l

T"1 ^I-^EE (vJ° " 4n)) t»^B) (l - z^) (-6, tan 0,). (CIO)

C-4

Bibliography

1. Ahmad, S. and G. Tesauro. "Scaling and Generalization in Neural Networks: A Case
Study," Proceedings of the Connectionist Models Summer School, 2:3-10 (1988).

2. Akaho, S. "Regularization Learning of Neural Networks for Generalization," Lecture
Notes in Computer Science, 7^5:99-110 (1993).

3. Angeline, Peter J., et al. "An Evolutionary Algorithm that Constructs Recurrent Neural
Networks," IEEE Transactions on Neural Networks, 5(l):54-65 (January 1994).

4. Bartlett, Peter L. "The Sample Complexity of Pattern Classification with Neural net-
works: The Size of the Weights is More Important than the Size of the Network," IEEE
Transactions on Information Theory, .^(2)-.525-536 (March 1998).

5. Beasley, David, et al. "A Sequential Niche Technique for Multimodal Function Opti-
mization," Evolutionary Computation, i (2):101—125 (1993).

6. Beyer, William H., editor. CRC Standard Mathematical Tables (27 Edition). CRC Press,
Inc., 1984.

7. Bishop, Christopher M. Neural Networks for Pattern Recognition. Oxford University
Press, 1995.

8. Bos, S. and E. S. Chng. "Using Weight Decay to Optimize the Generalization Ability of
a Perceptron," IEEE International Conference on Neural Networks, 1:241-246 (1996).

9. Bridle, J. S. Neurocomputing: Algorithms, Architectures and Applications, chapter Prob-
abilistic Interpretations of Feedforward Classification Network Outputs, with Relation-
ships to Statistical Pattern Recognition, 227-236. Springer-Verlag, 1990. Editors: F.
Fogelman Soulie and J. Herault.

10. Buntine, Wray L. and Andreas S. Weigend. "Bayesian Back-Propagation," Complex
Systems, 5:603-643 (1991).

11. Dalianis, P., et al. "A Study of the Generalization Capability Versus Training in Back-
Propagation Neural Networks," IEEE International Conference on Systems Man and
Cybernetics, ^:485-490 (1993).

12. Demuth, Howard and Mark Beale. Neural Network Toolbox User's Guide. The Math
Works. For use with MATLAB.

13. Denoeux, Thierry and Regis Lengelle. "Initializing Back Propagation Networks with
Prototypes," Neural Networks, 6:351-363 (1993).

14. Depenau, J. and M. Möller. "Aspects of Generalization and Pruning," World Congress
on Neural Networks, 5:504-509 (1994).

15. Draye, J.P., et al. "An Inhibitory Weight Initialization Improves the Speed and Quality
of Recurrent Neural Networks Learning," Neurocomputing, 16:207-224 (1997).

BIB-1

16. Duda, Richard O. and Peter E. Hart. Pattern Classification and Scene Analysis. John
Wiley and Sons, 1973.

17. Dunne, R. A. and N. A. Campbell. "Multi-Layer Perceptrons: Robustness and the
evolution of the weights through time." Proceedings of the seventh Australian conference
on neural networks. Number 7. 155-160. 1996.

18. Fogel, David B. and Lauren C. Stayton. "On the Effectiveness of Crossover in Simulated
Evolutionary Optimization," BioSystems, £2:171-182 (1994).

19. Hagiwara, Masafumi. "A Simple and Effective Method for Removal of Hidden Units and
Weights," Neurocomputing, 0:207-218 (1994).

20. Hogg, Robert V. and Allen T. Craig. Introduction to Mathematical Statistics. Englewood
Cliffs, NJ 07632: Prentice Hall, 1995.

21. Hole, Arne. "Vapnik-Chervonenkis Generalization Bounds for Real Valued Neural Net-
works," Neural computation, #(6):1277 (1996).

22. Holland, John H. Adaptation in Natural and Artificial Systems. Ann Arbor: The
University of Michigan Press, 1975.

23. Holland, John H. "Genetic Algorithms," Scientific American, 66-71 (July 1992).

24. Igelnik, B. and Y.-H. Pao. "Estimation of Size of Hidden Layer on Basis of Bound of
Generalization Error," IEEE International Conference on Neural Networks, 4:1923-1927
(1995).

25. Javidi, Bahram, et al. "An Optical pattern Recognition System for Validation and
Security Verification," Optical Society of America (1994).

26. Jim, K., et al. "Effects of Noise on Convergence and Generalization in Recurrent Net-
works," Advances in Neural Information Processing Systems, 7:649-656 (1995).

27. Kinnebrock, Werner. "Accelerating the standard backpropagation method using a ge-
netic approach," Neurocomputing, 5:583-588 (1994).

28. Kitano, Hiroaki. "Neurogenetic Learning: an Integrated Method of Designing and Train-
ing Neural Networks Using Genetic Algorithms.," Physica D, 75:225-238 (1994).

29. Kolen, John F. and Jordan B. Pollack. "Backpropagation is Sensitive to Initial Condi-
tions," Complex Systems, 4:269-280 (2990).

30. Korning, P. "Training Neural Networks by Means of Genetic Algorithms Working on
Very Long Chromosomes," International journal of neural systems., 5(3):299 (1995).

31. Lange, R. and R. Maenner. "Quantifying a Critical Training Set Size for Generaliza-
tion and Overfitting Using Teacher Neural Networks," ICANN -Proceedings, i:495-500
(1994).

32. Larsen, J. and L. K. Hansen. "Generalization Performance of Regularized Neural Net-
work Models," Neural Networks for Signal Processing, ^ :42—51 (1994).

BIB-2

33. Lawrence, S., et al. "Local Minima and Generalization," IEEE International Conference
on Neural Networks, i:371-376 (1996).

34. Lee, K.W. and H.N. Lam. "Optimizing Neural Network Weights using Genetic Algo-
rithms: A Case Study," IEEE, 1384-1388 (1995).

35. Lee, Soo-Young and Minho Lee. "Curvature Smoothing and Improved Generalization
by Hybrid Back-Propagation/Hebbian Learning Rule," World Congress on Neural Net-
works, i:596-599 (1995).

36. Leonard, J. and M.A. Kramer. "Improvement of the Backpropagation Algorithm for
Training Neural Networks," Computers ehem. Eng., 1^(3):337-341 (1990).

37. Lin, Chin-Teng and others. "Fuzzy Adaptive Learning Control Network with On-Line
Neural Learning," Fuzzy Sets and Systems, 71:25-45 (1995).

38. MacKay, David J. Bayesian Methods for Adaptive Models. PhD dissertation, California
Institute of Technology, 1991.

39. MacKay, David J. "Bayesian Interpolation," Neural Computation, ^:415-447 (1992).

40. MacKay, David J. "The Evidence Framework Applied to Classification Networks," Neu-
ral Computation, ^:720-736 (1992).

41. MacKay, David J. "A practical Bayesian Gramework for Backpropagation Networks,"
Neural Computation, 4:448-472 (1992).

42. Mattrea, D. and F. Palmieri. "New Bounds for Correct Generalization," IEEE Interna-
tional Conference on Neural Networks, 2:1051-1055 (1997).

43. Michalewicz, Zbigniew. Genetic Algirithms + Data Structures = Evolution Programs (3
Edition). Springer, 1996.

44. Monasson, Remi and Riccardo Zecchina. "Weight Space Structure and Internal Rep-
resentations: A Direct Approach to Learning and Generalization in Multilayer Neural
Networks," Physical Review Letters, 70(12):22O5 (1996).

45. Neal, Radford M. Bayesian Training of Backpropagation Networks by the Hybrid Monte
Carlo Method. Technical Report, Dept. of Computer Science, University of Toronto,
1992. Technical Report CRG-TR-92-1.

46. Neal, Radford M. Bayesian Learning for Neural Networks. Springer, 1996.

47. Negoita, M. Gh. and Dan Mihaila. "Intelligent Techniques Based on Genetic Evolu-
tion with Applications to Neural Networks Weights Optimization," Proceedings of the
International Congress on Cybernetics, 1^:955-962 (1995).

48. Nguyen, Derrick and Bernard Widrow. "Improving the Learning Speed of 2-Layer Neural
Networks by Choosing Initial Values of the Adaptive Weights," IEEE International Joint
Conference of Neural networks, 5:21-26 (1990).

49. Oh, J. H., et al. "Generalization in Two-Layer Neural Networks," Progress in Neural
Processing, (1):18-31 (1995).

BIB-3

50. Oh, Jong-Hoon and Kukjin Kang. "Generalization in Two-Layer Neural Networks,"
Progress in Neural Processing, 1:18-31 (1995).

51. Omlin, C. W. and C. L. Giles. "Pruning Recurrent Neural Networks for Improved
Generalization Performance," Neural Networks for Signal Processing, ^:690 (1994).

52. Onoda, T. "Experimental Analysis of Generalization Capability based on Information
Criteria," IEEE International Conference on Neural Networks, i:114-119 (1996).

53. Pan, Zhengjun and Lishan Kang. "Evolving Both the Topology and Weights of Neural
Networks," Parallel Algorithms and Applications, 0:299-307 (1996).

54. Park, Eui H. and others. "Adaptive Learning of Human Motion by a Tlerobont Using
a Neural Network Model as a Teacher," Computers and Industrial engineering, 27(1-
4):453-456 (1994).

55. Poggio, Tomaso and Federico Girosi. "Networks for Approximation and Learning,"
Proceedings of the IEEE, 75(9):1481-1497 (September 1990).

56. Poggio, Tomaso and Federico Girosi. "Regularization Algorithms for Learning That are
Equivalent to Multilayer Networks," Science, &f 7:978-982 (1990).

57. Porto, Vincent W., et al. "Alternative Neural Network Training Methods," IEEE Expert,
16 (June 1995).

58. Ramamurti, V. and J. Ghosh. "Improved Generalization in Localized Mixture of Experts
Networks," Intelligent Engineering Systems Through Artificial Neural Networks, 7:5-10
(1997).

59. Ripley, B. D. Pattern Recognition and Neural Networks. Cambridge, 1996.

60. Rogers, Steven K. and Matthew Kabrisky. An Introduction to Biological and Artificial
Neural Networks for Pattern Recognition, TT 4 • SPIE Optical Engineering Press, 1991.

61. Ruck, Dennis W., et al. "The Multilayer Perceptron as an Approximation to a Bayes
Optimal Discriminant Function," IEEE Transactions on Neural Networks, 1 (4):296-298
(December 1990).

62. Rudolph, S. "On Topology, Size and Generalization of Non-Linear Feedforward Neural
Networks," Neurocomputing, 16{l):l-22 (1997).

63. Sarkar, D. "Empirical Estimation of Generalization Ability of Neural Networks,"
Proceedings- SPIE The International Society for Optical Engineering, (2760):54-60
(1996).

64. Saseetharran, M(Sasheei). "Experiments That Reveal the Limitations of the Small Initial
Weights and the Importance of the Modified Neural Model," IEEE (1996).

65. Schmidt, M. "A Unification of Genetic Algorithms, Neural Networks and Fuzzy Logic:
The GANNFL Approach," Artificial Neural Networks - ICANN 96., (1112):495 (1996).

66. Schraudolph, Nocol N. and Terrence J. Sejnowski. "Tempering Backpropagation Net-
works: Not All Weights are Created Equal," Advances in Neural Information Processing
Systems, 5:563-569 (1996).

BIB-4

67. Sexton, Randall S., et al. "Toward Global Optimization of Neural Networks: A Compari-
son of Genetic Algorithm and Backpropagation," Decision Support Systems, #2:171-185
(1998).

68. Sternieri, Armando and Paolo Anelli, "Evolution Programs to Learn Weights
and Topology of Neural Networks." Internet Citation, September 1996.
http://www.fis.unipr.it/ anelli/articoli/AIIAga/rivista/rivista.html.

69. Tang, Chuan Zhang and Hon Keung Kwan. "Parameter effects on convergence speed and
generalization capability of backpropagation algorithm," Int. J. Electronics, 7^(l):35-46
(1993).

70. Thomas, John B. Introduction to Probability. Springer-Verlag, 1986.

71. Trafalis, Theodore B. and Tarek A. Tutunji. "A Quasi-Newton Barrier Function Al-
gorithm for Artificial Neural Network Training with Bounded Weights," ASME Press
Series on International Advances in Design Productivity, ^:161-166 (1994).

72. Tsukuda, Y., et al. "Investigation of Generalization Ability by Using Noise to Enhance
MLP Performance," IEEE International Conference on Neural Networks, 5:2795-2798
(1995).

73. Turmon, M. J. and T. L. Fine. "Assessing Generalization of Geedforward Neural Net-
works," IEEE International Symposium on Information Theory, 168 (September 1995).

74. Turmon, M. J. and T. L. Fine. "Empirically Estimating Generalization Ability of Feed-
forward Neural Networks," World Congress on Neural Networks, i:600-605 (1995).

75. Tveter, Don. "Getting a Fast Break with BACKPROP," AI Expert, 6:36-44 (1991).

76. Tzafestas, S.G., et al. "On the overtraining phenomenon of backpropagation neural
networks," Mathematics and Computers in Simulation, ^0:507-521 (1996).

77. Vapnik, V. N. and A. YA. Chervonenkis. "On the Uniform Convergence of Relative
Frequencies of Events to Their Probabilities," Theory of Probability and its Applications,
itf(2):264-280 (1971).

78. Vogl, T. P., et al. "Accelerating the Convergence of the Back-Propagation Method,"
Biological Cybernetics, 55:257-263 (1988).

79. Vrahatis, M.N., et al. "On the Acceleration of the Backpropagation Training Method,"
Nonlinear Analysis, Theory, methods and Applications, 30(7):4551-4554 (1997).

80. Waibel, Alexander, et al. "Phoneme Recognition Using Time-Delay Neural Networks,"
IEEE Transactions on Acoustics, Speech, and Signal Processing, 57(3):328 (March
1989).

81. White, David and Panos Ligomenides. "GANNet: A Genetic Algorithm for Optimizing
Topology and Weights in Neural Network Design," Lecture notes in computer science,
(686):322-327 (1993).

82. White, Halbert. "Learning in Artificial Neural Networks: A Statistical Perspective,"
Neural Computation, i:425-464 (1989).

BIB-5

83. White, Haibert. "Connectionist Nonparametric Regression: Multilayer Feedforward Net-
works Can Learn Arbitrary Mappings," Neural Networks, 5:535-549 (1990).

84. Wilson, D. Randall and Tony R. Martinez. "Instance-Based Learning with Genetically
Derived Attribute Weights," Proceedings of the IASTED International Conference Ar-
tificial Intelligence, Expert Systems, and Neural Networks, 19-21 (August 1996).

85. Yoon, H. and J. H. Oh. "Learning and Generalization in Higher-Order Perceptrons,"
Philosophical Magazine B, 77(5):1557-1564 (1998).

86. Zheng, Baoyu, et al. "Digital Mammography: Mixed Feature Neural Network with
Spectral Entropy Decision for Detection of Microcalcifications," IEEE Transactions on
Medical Imaging, 15(5):589 (October 1996).

BIB-6

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection ol information is estimated to average 1 hour per response, including the time for reviewing instructions, searching eiisting data sources, gathering and maintaining the data needed, and completing and reviewing
the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services Directorate for Information
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Poperwork Reduction Project (070401881, Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

September 1998
3. REPORT TYPE AND DATES COVERED

PhD Dissertation
4. TITLE AND SUBTITLE

Radial Complexity Estimation for Improved Generalization in Artificial Neural
Networks

6. AUTHOR(S)

Lemuel R. Myers, Jr, Capt, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Air Force Institute of Technology, WPAFB OH 45433-6583

5. FUNDING NUMBERS

. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT/DS/ENG/98-14

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Capt Thomas Rathbun
AFRL/SNAS, Area B, Bldg 23
Wright-Patterson AFB, OH 45433
255-6329 x2623

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for Public Release; Distribution Unlimited
12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

When training an artificial neural network (ANN) for classification using backpropagation of error, the weights are usually
updated by minimizing the error on the training set. As training ensues, overtraining may be observed as the network begins
to memorize the training data because, as the magnitude of the weight vector grows, the decision boundaries become overly
complex. It is then important to initialize the weights with consideration to the importance of the weight vector magnitude.
The expected value of the magnitude of the initial weight vector is here derived for the separate cases of each weight drawn
from a normal or uniform distribution. The usefulness of this derivation is universal since the magnitude of the weight vector
plays such an important role in the formation of the classification boundaries. One way to overcome the overtraining problem
is to stop the training early, which limits the magnitude of the weight vector below what it would be if the training were
allowed to continue until a near-global training error minimum were found. Here, the relationship between training data set
size and the radial complexity providing good generalization results is empirically established using cross-validational
analysis on small subsets of the training data. These results are then used to estimate at what weight vector magnitude the
training should be stopped when using the full data set. The general classification ability of an ANN trained in this manner is
shown to increase the percentage of correctly classified test data points by an average of 1.5% over that of one trained using
true cross-validational early stopping on a smaller data set. The technique of hyperspherical backpropagation is also
introduced and shown to be useful in lowering the validation error during training.
14. SUBJECT TERMS

Pattern Classification, Artificial Neural Networks, Multi-Layer Perceptrons, Regularization,
Discriminant Boundaries, Radial Complexity

15. NUMBER OF PAGES

97
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF
ABSTRACT

UL
Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 238.18
Designed using Perform Pro, WHSIDIOR, Oct 94

